

RIGHT FOR GENUINE EDUCATION

#42, 100FT ROAD, KAMMAGONDANAHALLI, **JALAHALLI WEST, BENGALURU - 560 015** Phone: 9008030463 9008030896 / 9513330437

HOSKOTE - MALUR ROAD, ISRI CROSS, KATTIGENAHALLI, JADIGENAHALLI HOBLI, **BENGALURU - 562114** Phone: 9741332998

8147397999 / 9535527713

PLOT NO.87, VAHINI NIVAS MATRUSRI NAGAR COLONY, HAFEEZ PET, MIYAPUR, **HYDERABAD - 500049** Phone: 8977548407 8977548408 / 8977548409

SUBJECT CHEMISTRY

KCET EXAMINATION - 2025

VERSION D3

LONG TERM COACHING 1ST BATCH FOR NEET - 2026

TH STARTS ON JUNE - 2025

NEET - 2024 | BMC - BANGALORE

NEET - 2021 | JIPMER - PUDUCHERRY

NEET - 2024 | BMC - BANGALORE

NEET - 2024 | MMCRI - MYSORE

NEET - 2024 | BMC - BANGALORE

NEET - 2023 | BMC, BANGALORE

NEET - 2023 | JIPMER PUDUCHERRY

NEET - 2024 | BIMC - BELAGAVI

NEET - 2024 | ESIMC - BANGALORE

NEET - 2022 | BIMC, BELAGAVI

NEET - 2024 | KIMS - HUBLI

NEET - 2024 | MMCRI - MYSORE

NEET - 2023 | AIIMS, NAGPUR

NEET - 2024 | KIMS - HUBLI

NEET - 2022 | AIIMS, BHOPAL

NEET - 2022 | BMC, BANGALORE

NEET - 2024 | KIMS - HUBLI

NEET - 2022 | BMC, BANGALORE

NEET - 2021 | BMC, BANGALORE

NEET - 2020 | BMC, BANGALORE

NEET - 2024 | MIMS - MANDYA

NEET - 2024 | MMCRI - MYSORE

NEET - 2022 | BMC, BANGALORE

NEET - 2024 | KIMS - HUBLI

NEET - 2023 | JIPMER PUDUCHERRY

NEET - 2024 | BIMC - BELAGAVI

NEET - 2024 | KIMS - BANGALORE

NEET - 2024 | MMCRI - MYSORE

NEET - 2024 | SABVIMS - BENGALURU

NEET - 2024 | SABVIMS - BENGALURU

NEET - 2021 | KIMS, HUBLI

NEET - 2024 | KIMS - HUBLI

NELMANGALA - LTM BOYS CAMPUS

RESIDE **SEPARATE HOSTEL FOR BOYS & GIRLS**

#2/5, Narayanappa Palya, Dasanpura, Tumkur Road, Bangalore - 560 062. +91 95133 30438 / +91 99805 33120

THE JOURNEY... LECTIONS

2260

in seven consecutive years. Our students joined in many reputed medical colleges across Karnataka.

NEET - 2023 | BMC, BANGALORE

NEET - 2024 | AIIMS, HYDERABAD.

NEET - 2024 | BIMC - BELAGAVI

NEET - 2024 | KIMS - HUBLI

NEET - 2024 | VIMS - BELLARY

NEET - 2024 | VIMS - BELLARY

NEET - 2024 | KIMS - HUBLI

NEET - 2024 | KIMS - HUBLI

NEET - 2024 | VIMS - BELLARY

NEET - 2024 | MIMS - MANDYA

NEET-2020 | BMC, BANGALORE

NEET-2024 | CIMS - CHAMARAJANAGAR

NEET-2022 | KIMS, HUBLI

NEET-2024 | GIMS - GADAG

NEET-2022 | BMC, BANGALORE

NEET-2023 | GMC, SECUNDERABAD

NEET-2024 | GIMS - GADAG

NEET-2024 | MIMS - MANDYA

MEHANTH SAI REDDY G R

NEET-2023 | BMC, BANGALORE

NEET-2022 | BMC, BANGALORE

NEET-2021 | MMCRI, MYSORE

- In the reaction between hydrogen sulphide and acidified permanganate solution,
 - 1) H_2S is oxidised to SO_2 , MnO_4^- is reduced to MnO₂
 - 2) H₂S is reduced to SO₂, MnO₄ is oxidised to Mn^{2+}
 - 3) H₂S is oxidised to S, MnO₄ is reduced to Mn^{2+}
 - 4) H_oS is reduced to S, MnO₄ is oxidised to Mn^{2+}

Sol. Conceptual

- A member of the Lanthanoid series which is well known to exhibit +4 oxidation state is
 - 1) Europium
- 2) Erbium
- 3) Cerium
- 4) Samarium

Ans. 3

Sol. Conceptual

- 3. In which of the following pairs, both the $(n-1)d^{10}ns^2$ elements do not have configuration?
 - 1) Zn, Cd
- 2) Cd, Hg
- 3) Ag, Cu
- 4) Cu, Zn

Ans. 3

Sol. $Cu \rightarrow 4s^1 3d^{10}$

 $Ag \rightarrow 5s^1 4d^{10}$

- 4. A ligand which has two different donor atoms and either of the two ligates with the central metal atom/ion in the complex is called _
 - 1) Unidentate ligand
- 2) Polydentate ligand
- 3) Ambidentate ligand 4) Chelate ligand

Ans. 3

Sol. Conceptual

- Which of the following statements are true 5. about $[NiCl_4]^{2-}$?
 - (a) The complex has tetrahedral geometry.
 - (b) Co-ordination number of Ni is 2 and oxidation state is +4.
 - (c) The complex is sp³ hybridised.
 - (d) It is a high spin complex.
 - (e) The complex is paramagnetic
 - 1) a, b, d and e
- 2) b, c, d and e
- 3) a, b, c and d
- 4) a, c, d and e

Ans. 4

Sol. Conceptual

- Which formula and its name combination is incorrect?
 - 1) $[CoCl_2(en)_2]Cl$, Dichloridobis (ethane-1, 2diamine) cobalt(III) chloride
 - 2) $[Co(NH_3)_5(CO_3)]Cl$,

Pentaammine carbonylcobalt (III) chloride

3) $[Pt(NH_3)_2Cl(NO_2)]$,

Diammine chloridonitrito-N-platinum (II)

4) $K_3[Cr(C_2O_4)_3]$,

Potassium trioxalatochromate (III)

Ans. 2

Sol. Conceptual

In the complex ion $[Fe(C_2O_4)_3]^{3-}$, the 7. Co-ordination number of Fe is 1) 5 2) 6 3) 3 4) 4

Ans. 2

Sol. Conceptual

Match List-I with List-II for the following reaction pattern

Reagent → Product → Structural prediction Glucose -

U	sc————————————————————————————————————	/ Structural prediction		
	List-I	List-II		
	(Reagents)	(Structural		
	/	prediction)		
	a) Acetic anhydride	i) Glucose has an		
		aldehyde group		
-	b) Bromine water	ii) Glucose has a		
		straight chain of six		
		carbon atoms		
	c) Hydroiodic acid	iii) Glucose has five		
		hydroxyl groups		
	d) Hydrogen cyanide	iv) Glucose has a		
		carbonyl group		

Choose the correct answer from the options given below.

- 1) a-iii, b-i, c-ii, d-iv 2) a-i, b-ii, c-iii, d-iv
- 3) a-iii, b-ii, c-i, d-iv 4) a-iv, b-iii, c-ii, d-i

Ans. 1

Sol. Conceptual

- 9. The **correct** sequence of α -amino acid, hormone, vitamin, carbohydrates respectively
 - 1) Glutamine, Insulin, Aspartic acid, Fructose
 - 2) Arginine, Testosterone, Glutamic acid, Maltose
 - 3) Aspartic acid, Insulin, Ascorbic acid, rhamnose
 - 4) Thiamine, Thyroxine, Vitamin A, Glucose

Ans. 3

Sol. Conceptual

- Which examples of carbohydrates exhibit α – link (α – glycosidic link) in their structure?
 - 1) Amylose and Amylopectin
 - 2) Cellulose and Glycogen
 - 3) Glucose and Fructose
 - 4) Maltose and Lactose

Sol. Conceptual

- In the titration of potassium permanganate (KMnO₄) against Ferrous ammonium sulphate (FAS) solution, dilute sulphuric acid but not nitric acid is used to maintain acidic medium, because
 - 1) Nitric acid doesn't act as an indicator
 - 2) Nitric acid itself is an oxidising agent
 - 3) Nitric acid is a weak acid than sulphuric acid
 - 4) It is difficult to identify the end point

Ans. 2

Sol. HNO₃ is an oxidising agent

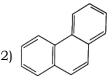
- 12. The group reagent $NH_4Cl_{(s)}$ and aqueous NH_3 , will precipitate which of the following ion 1) Al^{3+}
- 2) Ba²⁺
- 3) Ca²⁺

Ans. 1

- Al^{3+} ppt as $Al(OH)_3$ in presence of NH_4Cl and NH₄OH.
- In the preparation of sodium fusion extract, 13. the purpose of fusing organic compound with a piece of sodium metal is to
 - 1) Convert the elements of the compound from covalent form to ionic form
 - 2) Convert the elements of the compound from ionic form to covalent form
 - 3) Decrease the melting point of the compound
 - 4) Convert the organic compound into vapour state

Ans. 1

Sol. Conceptual


- The sodium fusion extract is boiled with 14. concentrated nitric acid while testing for halogens. By doing so, it
 - 1) increases the solubility of AgCl
 - 2) increases the concentration of NO₃ ion
 - 3) decomposes Na₂S and NaCN, if formed
 - 4) helps in precipitation of AgCl

Ans. 3

Sol. Conceptual

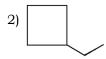
15. Which of the following is not an aromatic compound?

Ans. 4

Sol. Conceptual

The IUPAC name of the given organic 16. compound is

$$HC \equiv C - CH = CH - CH = CH_2$$


- 1) Hexa 5-yn-1,3-diene
- 2) Hexa-1,3-dien 5 yne
- 3) Hexa 3, 5-dien -1- yne
- 4) Hexa-1-yn-3,5-diene

2 Ans.

Sol. Conceptual

Among the following, identify the compound that is not an isomer of hexane

1)
$$CH_3 - CH_2 - CH_2 - CH_2 - CH_2 - CH_3$$

3)
$$\begin{array}{c} \operatorname{CH_3} \\ \operatorname{CH_3} - \operatorname{CH} - \operatorname{CH_2} - \operatorname{CH_2} - \operatorname{CH_3} \end{array}$$

4)
$$CH_3 - CH_2 - CH - CH_2 - CH_3$$

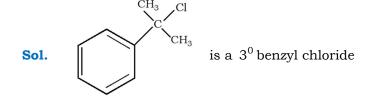
 CH_3

Ans. 2

Sol.

not an isomer of hexane

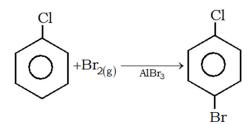
because, it is a ring chain isomer of **hexene**.



18. The organic compound

classified as

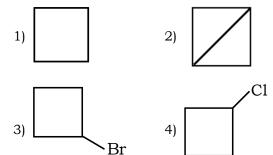
- 1) Benzyl halide
- 2) Aryl halide
- 3) Alkyl halide
- 4) Allylic halide


Ans. 1

- 19. Chlorobenzene reacts with bromine gas in the presence of Anhy AlBr₃ to yield p-Bromochlorobenzene. This reaction is classified as
 - 1) Nucleophilic substitution reaction
 - 2) Electrophilic substitution reaction
 - 3) Addition reaction
 - 4) Elimination reaction

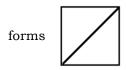
Ans. 2

Sol.


is an example for Electrophilic substitution reaction

- The organometallic compound $(CH_3)_3$ CMgBr 20. on reaction with D₂O produces
 - 1) $(CD_3)_3 CD$
- 2) $(CD_3)_3 COD$
- 3) $(CH_3)_3 CD$
- 4) (CH₃)₃ COD

Ans. 3 Sol.


$$\begin{array}{c} CH_3 & CH_3 \\ CH_3 - C - MgBr \xrightarrow{D_2O} CH_3 - C - D + Mg(OD)Br \\ CH_3 & CH_3 \end{array}$$

The major product formed when 1 - Bromo-3-Chlorocyclobutane reacts with metallic sodium in dry ether is

Ans. 2

Sol. Intra molecular Wurtz reaction takes place and

- 22. Ethyl alcohol is heated with concentrated sulphuric acid at 413 K $(140^{\circ}C)$. The major product formed is
 - 1) $CH_3 O C_3H_7$ 2) $CH_2 = CH_2$

 - 3) $CH_3COOC_2H_5$ 4) $C_2H_5 O C_2H_5$

Ans. 4

Sol. Diethyl Ether (inter molecular dehydration takes place)

$$2C_2H_5 - OH \xrightarrow{413K} C_2H_5 - O - C_2H_5 + H_2O$$

- 23. Phenol can be distinguished from propanol by using the reagent
 - 1) Iron metal
- 2) Iodine in alcohol
- 3) Sodium metal
- 4) Bromine water

Ans. 4

- **Sol.** Bromine water test Phenol + Br₂ water \rightarrow white ppt, Alcohol + Br_2 water \rightarrow No reaction
- 24. Match the following with their pKa values

	Acid	pKa
I	Phenol	a) 16
II	p-Nitrophenol	b) 0.78
III	Ethyl alcohol.	c) 10
IV	Picric acid	d) 7.1

- 1) I a, II d, III c, IV b
- 2) I-a, II b, III c, IV d
- 3) I-b, II a, III d, IV c
- 4) I-c, II -d, III a, IV b

Ans. 4

Sol. Conceptual

25.
$$CH_3 - C - OCH_3 + HI \longrightarrow A + B, A$$

$$CH_3 - C - OCH_3 + HI \longrightarrow A + B, A$$

Respectively are

1)
$$A = CH_3OH, B = CH_3 - C - I$$

 CH_3
 CH_3

2)
$$A = CH_3 - I, B = CH_3 - C - I$$

 CH_3
 CH_3

3)
$$A = CH_3OH, B = CH_3 - C - OH$$

 CH_3
 CH_3

4)
$$A = CH_3 - I, B = CH_3 - C - OH$$

 CH_3
 CH_3

Ans. 1

Sol.
$$CH_3$$
 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3 CH_3

 Oxidation of Toluene with chromyl chloride followed by hydrolysis gives Benzaldehyde.

This reaction is known as

- 1) Kolbe reaction
- 2) Stephen reaction
- 3) Cannizzaro Reaction
- 4) Etard Reaction

Ans. 4

Sol.
$$(i) \operatorname{CrO_2Cl_2, CS_2}$$
 CHO
$$(ii) \operatorname{H^+}$$

27. Statement-I: Reduction of ester by DIBAL-H followed by hydrolysis gives aldehyde. Statement-II: Oxidation of benzyl alcohol with aqueous KMnO₄ leads to the formation of Benzaldehyde.

Among the above statements, identify the correct statement.

- 1) Statement-I is true but statement-II is false
- 2) Statement-I is false but statement-II is true
- 3) Both statements-I and II are true
- 4) Both statements-I and II are false

Ans. 1

Sol.
$$R - COOR^1 \xrightarrow{DIBAL-H} R - CHO + R^1 - OH$$

28. Arrange the following compounds in their decreasing order of reactivity towards
Nucleophilic addition reaction.

CH₃COCH₃,CH₃COC₂H₅,CH₃CHO

- 1) CH₃COCH₃ > CH₃CHO > CH₃COC₂H₅
- 2) CH₃COC₂H₅ > CH₃COCH₃ > CH₃CHO
- 3) $CH_3CHO > CH_3COC_2H_5 > CH_3COCH_3$
- 4) CH₃CHO > CH₃COCH₃ > CH₃COC₂H₅

Ans. 4

Sol. Reactivity order towards Nucleophilic addition reactions

$$CH_3 - CHO > CH_3 - CO - CH_3 > CH_3 - CO - C_2H_5$$

29. Which of the following has most acidic Hydrogen?

- 1) Dichloroacetic acid 2) Trichloroacetic acid
- 3) Chloroacetic acid
- 4) Propanoic acid

Ans. 2

Sol. (Trichloroacetic acid)

- 30. Which of the following reagents are suitable to differentiate Aniline and N -methylaniline chemically?
 - 1) Br₂ water
 - 2) Conc. Hydrochloric acid and anhydrous zinc chloride
 - 3) Chloroform and Alcoholic potassium Hydroxide
 - 4) Acetic anhydride

Ans. 3

Sol. Chloroform and Alc. KOH

Which of the following reaction/s does not yield an amine?

I.
$$R - X + NH_3 \xrightarrow{\Delta}$$

II.
$$R - C \equiv N \xrightarrow{\text{Na(Hg)/C}_2\text{H}_5\text{OH}}$$

III.
$$R - C \equiv N + H_2O \xrightarrow{H^+}$$

IV.
$$R - \stackrel{O}{C} - NH_2 + 4[H] \xrightarrow{i) \text{ LiAlH}_4} \rightarrow$$

- 1) Only II
- 2) Only III
- 3) Both II and IV
- 4) Both I and IV

Ans. 2

Sol.
$$R - C = N + H_2O \xrightarrow{H^+} RCOOH$$

32. Match the compounds given in List-I with the items given in List-II

items given in biot ii				
List-I	List-II			
(I) Benzenesulphonyl	(a) Zwitterion			
Chloride				
(II) Sulphanilic acid	(b) Hinsberg reagent			
(III) Alkyl Diazonium	(c) Dyes			
salts				
(IV) Aryl Diazonium	(d) Conversion to			
salts	alcohols			

- 1) I-a, II-c, III-b, IV-d 2) I-c, II-a, III-d, IV-b
- 3) I-b, II-a, III-d, IV-c 4) I-c, II-b, III-a, IV-d

2) 3

4) 16

Ans. 3

Sol. Conceptual

- 33. The number of orbitals associated with 'N' shell of an atom is
- 1) 32

Ans. 4

Sol.

K	L	M	N
S	S,P	S,P,d	S,P,d,f
1	1+3	1+3+5	1+3+5+7

3) 4

Total number of orbitals in Nth shell = 16

Total number of orbitals in the given shell= n^2 $n = 4 \text{ then } n^2 = 16$

According to the Heisenberg's Uncertainty 34. principle, the value of $\Delta v.\Delta x$ for an object whose mass is 10^{-6} kg is

$$(h = 6.626 \times 10^{-34} \text{Js})$$

1)
$$4.0 \times 10^{-26} \ m^{-2} \ s^{-1}$$
 2) $3.5 \times 10^{-25} \ m^{-2} \ s^{-1}$

3)
$$5.2 \times 10^{-29} \text{ m}^{-2} \text{ s}^{-1}$$
 4) $3.0 \times 10^{-24} \text{ m}^{-2} \text{ s}^{-1}$

Ans. 3

Sol.
$$\Delta v.\Delta x = \frac{h}{4\pi m}$$

$$= \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 10^{-6}}$$
$$= \frac{6.626 \times 10^{-28}}{12.56}$$

 $=0.527\times10^{-28}$

- $=5.27 \times 10^{-29} \,\mathrm{m}^2\mathrm{s}^{-1}$
- 35.Gi ven below are two statements.

Statement-I: Adiabatic work done is positive when work is done on the system and internal energy of the system increases

Statement-II: No work is done during free expansion of an ideal gas

In the light of the above statements, choose the correct answer from the options given below.

- 1) Statement-I is true but Statement-II is false
- 2) Statement-I is false but Statement-II is true
- 3) Both Statement-I and Statement-II are true
- 4) Both Statement-I and Statement-II are false

Ans. 3

Sol. w = +ve, q = 0

$$\Delta U = w + q$$

$$\Delta U = w$$

36. Which one of the following reactions has $\Delta H = \Delta U$?

1)
$$C_6H_6(\ell) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(\ell)$$

- 2) $2HI(g) \rightleftharpoons H_2(g) + I_2(g)$
- 3) $N_2(g) + 3H_2(g) \rightleftharpoons 2NH_3(g)$
- 4) $CaCO_3(s) \xrightarrow{\Delta} CaO(s) + CO_2(g)$

Ans. 2

Sol. $\Delta H - \Delta U = \Delta ng RT$ $(\Delta ng = 0)$

 $\Delta H - \Delta U = 0$

 $\Delta H = \Delta U$

- 37. Identify the **incorrect** statements among the following:
 - (a) All enthalpies of fusion are positive.
 - (b) The magnitude of enthalpy change does not depend on the strength of the intermolecular interactions in the substance undergoing phase transformations.
 - (c) When a chemical reaction is reversed, the value of $\Delta r H^0$ is reversed in sign.
 - (d) The change in enthalpy is dependent of path between initial state (reactants) and final state (products)

- (e) For most of the ionic compounds, $\Delta_{sol}H^0$ is negative.
- 1) b, d and e
- 2) a, d and e
- 3) a and c only
- 4) a, b and d

Conceptual Sol.

- 38. Which of the following statements is/are true about equilibrium?
 - (a) Equilibrium is possible only in a closed system at a given temperature
 - (b) All the measurable properties of the system remain constant at equilibrium.
 - (c) Equilibrium constant for the reverse reaction is the inverse of the equilibrium constant for the reaction in the forward direction.
 - 1) Only c
- 2) a, b and c
- 3) Only a
- 4) Only b

Ans. 2

Sol. Conceptual

- 39. According to Le Chatelier's principle, in the reaction $CO(g) + 3H_2(g) \rightleftharpoons CH_4(g) + H_2O(g)$, the formation of methane is favoured by
 - (a) increasing the concentration of CO
 - (b) increasing the concentration of H₂O
 - (c) decreasing the concentration of CH₄
 - (d) decreasing the concentration of H₂
 - 1) b and d
- 2) a and d
- 3) a and b
- 4) a and c

Ans. 4

- Sol. increasing the concentration of CO and decreasing the concentration of CH₄.
- 40. The equilibrium constant at 298 K for the reaction $A+B \rightleftharpoons C+D$ is 100. If the initial concentrations of all the four species were 1 M each, then equilibrium concentration of D (in molL⁻¹) will be
 - 1) 1.818
- 2) 1.182
- 3) 0.818
- 4) 0.182

Ans. 1

Sol.

$$A + B \rightleftharpoons C + D$$

initi	al	1	1	1	1
At e	qb	1-x	1-x	1+x	1+x

$$K_{c} = \frac{[C][D]}{[A][B]}$$

$$100 = \frac{(1+x)(1+x)}{(1-x)(1-x)}$$

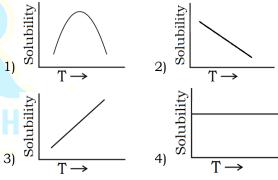
$$\Rightarrow 10^2 = \left\lceil \frac{(1+x)}{(1-x)} \right\rceil^2$$

$$\Rightarrow$$
 10 (1 - x) = 1 + x

On solving, we get x = 0.818

$$[D] = 1 + x = 1.818$$

- 41. Among the following 0.1 m aqueous solutions, which one will exhibit the lowest boiling point elevation, assuming complete ionization of the compounds in solution?
 - 1) Aluminium sulphate
 - 2) Potassium sulphate
 - 3) Sodium chloride
 - 4) Aluminium chloride


Ans. 3

Sol. m = 0.1

 $\Delta T_b \propto concentration$

i.e., lowest boiling elevation shown by solution with lowest concentration

42. Variation of solubility with temperature T for a gas in liquid is shown by the following graphs. The correct representation is

Ans.

- Sol. Solubility of gas in liquid decreases with temperature.
- 43. 180 g of glucose, $C_6H_{12}O_6$, is dissolved in 1 kg of water in a vessel. The temperature at which water boils at 1.013 bar is _____ (given, K_b for water is 0.52 K kg mol⁻¹. Boiling point for pure water is 373.15 K)
 - 1) 373,15 K
- 2) 373.0 K
- 3) 373.202 K
- 4) 373.67 K

Ans. 4

Sol.

$$\begin{aligned} w_2 &= 180 \text{gm} & \Delta T_b &= K_b m \\ M_2 &= 180 \text{gm} & = 0.52 \bigg[\frac{180}{180} \times \frac{1000}{1000} \bigg] = 0.52 \\ W_1 &= 1 \text{kg} & T_b^s &= T_b^0 + 0.52 \\ K_b &= 0.52 \text{ K.kg.mol}^{-1} & T_b^s &= T_b^0 + 0.52 \end{aligned}$$

$$K_b = 0.52 \text{ K.kg.mol}^{-1}$$
 $T_b^s = T_b^o + 0.52$
= 373.15 + 0.52

$$T_b^0 = 373.15K$$
 = $373.67k$

If N₂ gas is bubbled through water at 293 K, how many moles of N_2 gas would dissolve in 1 litre of water? Assume that N₂ exerts a partial pressure of 0.987 bar.

[Given K_H for N_2 at 293 K is 76.48 K bar]

- 1) 7.16×10^{-5}
- 2) 7.16×10^{-4}
- 3) 7.16×10^{-3}
- 4) 0.716×10^{-3}

Ans. 2 & 4

Sol. $P_{N_0} = 0.987 \, \text{bar}$

 $K_H = 76.48 \text{K.bar.} = 76.48 \times 10^3 \text{ bar}$

Henry's law $P = K_H X$

$$X = \frac{P}{K_H} = \frac{0.987}{76.48 \times 10^3}$$

$$\frac{n_{N_2}}{n_{N_2} + n_{water}} = 0.0129 \times 10^{-3}$$

$$n_{N_2} <<< n_{water}$$

Hence

$$n_{N_2} = n_{water} \times 0.0129 \times 10^{-3}$$

$$=\frac{1000}{18}\times0.0129\times10^{-3}$$

- =0.000716
- $=0.716\times10^{-3}$
- The correct statement/s about Galvanic cell 45. is/are
 - (a) Current flows from cathode to anode
 - (b) Anode is positive terminal
 - (c) If $E_{cell} < 0$, then it is spontaneous reaction
 - (d) Cathode is positive terminal
 - 1) a, b and c
- 2) a and d only
- 3) b only
- 4) a and b only

Ans. 2

Sol. In a galvanic cell,

Anode is negative terminal

Cathode is positive terminal

If $E_{cell} < 0$, then it is non-spontaneous reaction

- The electronic conductance depends on
 - 1) The number of valence electrons per atom
 - 2) Concentration of the electrolyte
 - 3) Size of the ions
 - 4) Nature of electrolyte added

Ans. 1

Sol. Conceptual

- For a given half cell, $Al^{3+} + 3e^{-} \rightarrow Al$ on 47. increasing the concentration of aluminium ion, the electrode potential will
 - 1) No change
 - 2) First increase then decrease
 - 3) Increase
 - 4) Decrease

Ans. 3

Sol.
$$E_{Al^{3+}/Al} = E_{Al^{3+}/Al}^{0} - \frac{0.059}{3} log \frac{1}{Al^{3+}}$$

$$\therefore \mathrm{E}_{\mathrm{Al}^{3+}/\mathrm{Al}} \alpha \left[\mathrm{Al}^{3+} \right]$$

Match the following and select the correct 48. option for the quantity of electricity, in Cmol⁻¹, required to deposit various metals at cathode.

List -I

List -II

a) Ag⁺

i. 386000 Cmol⁻¹

b) Mg²⁺

ii. 289500 Cmol⁻¹

c) A1³⁺

- iii. 96500 Cmol⁻¹
- d) Ti⁴⁺
- iv. 193000 Cmol⁻¹
- 1) a-iii, b-iv, c-ii, d-i 2) a-iv, b-iii, c-i, d-ii 3) a-i, b-ii, c-iii, d-iv
 - 4) a-ii, b-I, c-iv, d-iii

Ans. 1

Sol. $Ag^+ \Rightarrow 96500 \text{ Cmol}^{-1}$

$$Mg^{+2} = 2 \times 96500$$

 $= 193000 \text{ Cmol}^{-1}$

$$A1^{+3} \Rightarrow 3 \times 96500$$

298500

$$Ti^{+4} = 4 \times 965000$$

= 3866000

- 49. Catalysts are used to increase the rate of a chemical reaction. Because it
 - 1) Decrease the activation energy of the reaction
 - 2) Brings about improper orientation of reactant molecules
 - 3) Increases the potential energy barrier
 - 4) Increases the activation energy of the reaction

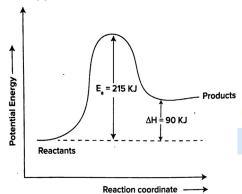
Ans. 1

Sol. Catalyst decrease the activation energy of the reaction and increase the rate of

- 50. Half-life of a first order reaction is 20 seconds and initial concentration of reactant is 0.2M. The concentration of reactant left after 80 seconds is
 - 1) 0.05 M
- 2) 0.0125 M
- 3) 0.2 M
- 4) 0.1M

Sol. 0.2

$$0.2 \qquad M$$


$$\xrightarrow{20 \text{ sec}} 0.1M \xrightarrow{20 \text{ sec}} 0.05M \xrightarrow{20 \text{ sec}}$$

$$\rightarrow 0.025M \xrightarrow{20 \text{ sec}} 0.0125M$$

Total time = $4 \times 20 \text{ sec} = 80 \text{ sec}$ concentration of reactant

Amount of substance left =0.0125M

51. In the given graph, E_a for the reverse reaction will be

- 1) 215 KJ
- 2) 90 KJ
- 3) 305 KJ
- 4) 125 KJ

Ans. 4

Sol.
$$\Delta H = (E_a)_f - (E_a)_b$$

 $90 = 215 - (E_a)_b$

$$(E_a)_b = 215 - 90 = 125 \text{ KJ}$$

52. For the reaction $2N_2O_{5(g)} \rightarrow 4NO_{2(g)} + O_{2(g)}$ initial concentration of N_2O_5 is 2.0 mol L^{-1} and after 300 min, it is reduced to 1.4 mol L^{-1} . The rate of production of

 NO_2 (in mol L^{-1} min⁻¹) is

- 1) 4×10^{-4}
- 2) 2.5×10^{-3}
- 3) 4×10^{-3}
- 4) 2.5×10^{-4}

Ans. 3

Sol. Rate of production of

$$\frac{d[NO_2]}{dt} = ?$$

$$\Rightarrow -\frac{1}{2} \frac{d[N_2O_5]}{dt} = +\frac{1}{4} \frac{d[NO_2]}{dt}$$

$$\Rightarrow \frac{d[NO_2]}{dt} = \frac{4}{2} \frac{d[N_2O_5]}{dt} \Rightarrow \frac{4}{2} \times \frac{2-1.4}{300}$$

$$= 4 \times 10^{-3} \text{ mole.lit. min}^{-1}$$

- 53. Which of the following methods of expressing concentration are unitless?
 - 1) Molality and Mole fraction
 - 2) Mass percent (W/W) and Molality
 - 3) Molality and Molarity
 - 4) Mole fraction and Mass percent (W/W)

Ans. 4

- **Sol.** Mole fraction and mass percent (w/w) has no units because both are mass ratios
- 54. Select the INCORRECT statement/s from the following:
 - (a) 22 books have infinite significant figures.
 - (b) In the answer of calculation $2.5 \times 1.25\,$ has four significant figures.
 - (c) Zero's preceding to first non-zero digit are significant.
 - (d) In the answer of calculation 12.11+18.0+1.012 has three significant figures
 - 1) (b) and (c) only
- 2) (b) and (d) only
- 3) (a) and (b) only
- 4) (b), (c) and (d)

Ans. 1

Sol. Conceptual

55. Given below are the atomic masses of the elements:

Element:	Li	Na	C1	K	Ca	Br	Sr	I	Ba
Atomic Mass (gmol ⁻¹):	7	23	35.5	39	40	80	88	127	137

Which of the following doesn't form triad?

- 1) Cl, Br, I
- 2) Cl, K, Ca
- 3) Li, Na, K
- 4) Ba, Sr, Ca

Ans. 2

Sol. Conceptual

56. The change in hybridisation (if any) of the 'Al' atom in the following reaction is

$$AlCl_3 + Cl^- \rightarrow AlCl_4^-$$

- 1) sp^2 to sp^3
- 2) sp^3 to sp^3d
- 3) sp^3 to sp^2
- 4) No change in the hybridisation state

Ans. 1

Sol. Hybridisation changes from sp² to sp³

57. Match List-I with List-II and select the correct option:

•				
	List-I	List-II		
	(Molecule /ion)	(Bond order)		
	(a) NO	(i) 1.5		
	(b) CO	(ii) 2.0		
	(c) O ₂	(iii) 2.5		
	(d) O ₂	(iv) 3.0		

- 1) a-i, b-iv, c-iii, d-ii
- 2) a-ii, b-iii, c-iv, d-i
- 3) a-iv, b-iii, c-ii, d-i
- 4) a-iii, b-iv, c-i, d-ii

Ans. 4

Sol. Molecule/ion

Bond order

a) NO
$$(15e^{-})$$

2.5

3.0

c)
$$O_2^ (17e^-)$$

1.5

d)
$$O_2 \left(16\,e^-\right)$$

2.0

58. The electronic configuration of X and Y are given below:

 $X:1s^22s^22p^63s^23p^3$

$$Y: 1s^2 2s^2 2p^6 3s^2 3p^5$$

Which of the following is the correct molecular formula and type of bond formed between X and Y?

- 1) X_2Y_3 , coordinate bond
- 2) XY₃, covalent bond
- 3) X₂Y, covalent bond
- 4) X₃Y, ionic bond

Ans. 2

Sol. X = +3

Y = -1

Compound formula XY_3 covalent

59. Match List-I with List - II

List-I (Types of redox reactions)	List-II (Examples)
(a) Combination reaction	(i) $C\ell_{2(g)} + 2Br_{(aq)}^{-} \rightarrow 2C\ell_{(aq)}^{-} + Br_{2(\ell)}$
(b) Decomposition reaction	(ii) $2H_2O_{2(aq)} \rightarrow 2H_2O_{(\ell)} + O_{2(g)}$
(c) Displacement reaction	(iii) $CH_{4(g)} + 2O_{2(g)} \xrightarrow{\Delta} CO_{2(g)} + 2H_2O_{(\ell)}$
(d) Disproportio -nation Reaction	(iv) $2H_2O_{(\ell)} \xrightarrow{\Delta} 2H_{2(g)} + O_{2(g)}$

Choose the correct answer from the options given below.

- 1) a-ii, b-i, c-iv, d-iii
- 2) a-iii, b-iv, c-i, d-ii
- 3) a-iii, b-ii, c-i, d-iv
- 4) a-iv, b-iii, c-i, d-ii

Ans. 2 Sol.

 $CH_4 + 2O_2 \xrightarrow{\Delta} CO_2 + 2H_2O$ – combination reaction

 $2H_2O \xrightarrow{\Delta} 2H_2 + O_2$ – Decomposition reaction

 $Cl_2 + 2Br^- \rightarrow 2Cl^- + Br_2$ – Displacement reaction 2H₂O₂ → 2H₂O + O₂ – Disproportionation reaction

- 60. In the following pairs, the one in which both transition metal ions are colourless is
 - 1) V²⁺, Ti³⁺
- 2) Zn^{2+} , Mn^{2+}
- 3) Ti⁴⁺, Cu²⁺
- 4) Sc^{3+} , Zn^{2+}

Ans. 4

Sol. SC^{3+} , Zn^{2+} – are colourless due to absence of unpaired electrons

SHIVADEEP SS

PANKAJ BASANAGOUD P

ARCHANA SUBHASH K

PU SCIENCE ANNUAL EXAM - 2025 TOPPERS

20259152883 20259229052

SYED AKHYAR HUSSAII

20259152929

20259152711

20259152858

20259142981

MAKKENA SAI PRAMATHI

20259142895

TOPPERS NF DR ACADEMY

240310806545 - 2024

ISHAQ HAMZA **PERCENTILE**

IISC, BENGALURU - 2022

220310128625 - 2022 ROHITH BIRADAR

PERCENTILE

IIIT DHARWAD - 2021

230310865486 - 2023

240310757600 - 2024

JEE MAIN - 2025 PHASE-I ACHIEVERS

JALAHALLI

ADDRESS - #42, 100FT ROAD, KAMMAGONDANAHALLI, JALAHALLI WEST, **BENGALURU - 560 015**

+91 90080 30463 +91 90080 30896

+91 95133 30437

HOSAKOTE

LTM BOYS CAMPUS :- Defence Colony, Virognagar, Cheemasandra, Avalahalli South, Hoskote - 560049 LTM GIRLS CAMPUS :- Ist Main Road, Beside Adithya PU College, 4th Cross, TG Extension, Hoskote.

97413 32998 81473 97999

+91 95355 27713

NELMANGALA

LTM BOYS CAMPUS

DASANPURA

#2/5, Narayanappa Palya, Dasanpura, Tumkur Road, Bangalore - 560 062.

+91 95133 30438 +91 99805 33120