DORIGHT DO RIGHT FOR GENUINE EDUCATION

#42, 100FT ROAD, KAMMAGONDANAHALLI, JALAHALLI WEST, BENGALURU - 560 015 Phone : 9008030463 9008030896 / 9513330437 HOSKOTE - MALUR ROAD, ISRI CROSS, KATTIGENAHALLI, JADIGENAHALLI HOBLI, BENGALURU - 562114 Phone : 9741332998 8147397999 / 9535527713 PLOT NO.87, VAHINI NIVAS MATRUSRI NAGAR COLONY, HAFEEZ PET, MIYAPUR, HYDERABAD - 500049 Phone : 8977548407 8977548408 / 8977548409

NEET EXAMINAT - 2025 **CODE - 45** DATE: 04-05-2025 TIME : 02:00 PM TO 05:00 PM **STARTS ON** LONG TERM COACH JUNE - 2025 1ST BATCH FOR NEET – 2026 Е ΕM NEET - 2024 | JIPMER - PUDUCHERRY NEET - 2021 | JIPMER - PUDUCHERRY NEET - 2024 | BMC - BANGALORE NEET - 2024 | BMC - BANGALORE NEET - 2024 | BIMC - BELAGAVI NEET - 2024 | KIMS - HUBLI 7417 **H**HT 686 686 HHF (1)RYA TEJA GUDURI MAN REDDY B V **KADI AGOND** AMFERMUSADDIO SANADI NEET - 2024 | SABVIMS - BENGALURU NEET - 2024 | MMCRI - MYSORE NEET - 2023 | BMC, BANGALORE NEET - 2024 | BMC - BANGALORE NEET - 2023 | JIPMER PUDUCHERRY NEET - 2022 | BIMC, BELAGAVI 581 681 **H**H HH 57 SUBHASH HUKKERI SHRAVAN REDDY C N MOHAMMED NAASIRUDDEEN D SUHAS L KORABU NEET - 2023 | AIIMS, NAGPUR NEET - 2022 | AIIMS, BHOPAL NEET - 2022 | BMC, BANGALORE NEET - 2022 | BMC, BANGALORE NEET - 2024 | ESIMC - BANGALORE NEET - 2024 | MMCRI - MYSORE 1 57 **N** CHANDANA D **GIRISH J PARAMAGOND** MMED SULEMAN CHATHUSH GOWDA D S SOWRAV B **ZOYA FIRDOUSE** NEET - 2024 | KIMS - HUBLI NEET - 2024 | KIMS - HUBLI NEET - 2024 | KIMS - HUBLI NEET - 2021 | BMC, BANGALORE NEET - 2020 | BMC, BANGALORE NEET - 2024 | GIMS - GULBARGA 444 444 HH 11 SNEHA SUBHAS PATIL RAJIV BHEEMASHANKAR CHOUDHARI **RASHMI PATII** JAYANTH L S MOHAMMED ZEESHAN NEET - 2024 | KIMS - HUBLI NEET - 2024 | MIMS - MANDYA NEET - 2022 | BMC, BANGALORE NEET - 2024 | MMCRI - MYSORE NEET - 2023 | JIPMER PUDUCHERRY NEET - 2024 | BIMC - BELAGAVI 667 441 11 П h POOJA U SAMPAT GOPAL GOKAK DIVYA M YALIGAR **SIDDHARTH A S** SHASHANK SURADOOR NEET - 2024 | SABVIMS - BENGALURU NEET - 2024 | KIMS - BANGALORE NEET - 2024 | MMCRI - MYSORE NEET - 2024 | SABVIMS - BENGALURU NEET - 2021 | KIMS, HUBLI NEET - 2024 | KIMS - HUBLI 660 660 660 HHI(HHI)55 SHRIDHAR BIRADAR POOJA N TARUN N ADHITHYA SUDARSAN GOKHALE NACHIKET KEMPANNA SINDHU VADAVADAG **NELMANGALA - LTM BOYS CAMPUS**

DAY & RESIDENTIAL SEPARATE HOSTEL FOR BOYS & GIRLS

#2/5, Narayanappa Palya, Dasanpura, Tumkur Road, Bangalore - 560 062. +91 95133 30438 / +91 99805 33120

DR ACADEMY IS THE PERFECT DESTINATION FOR MEDICAL ASPIRANTS

PHYSICS

1. Consider a water tank shown in the figure. It has one wall at x = L and can be taken to be very wide in the z direction. When filled with a liquid of surface tension S and density ρ , the liquid surface makes angle $\theta_0(\theta_0 \ll 1)$ with the x-axis at x = L. If y(x) is the height of the surface then the equation for y(x) is:

$$(take \ \theta(\mathbf{x}) = \sin \theta(\mathbf{x}) = tan \ \theta(\mathbf{x}) = \frac{dy}{dx},$$

g is the acceleration due to gravity)

1)
$$\frac{d^2y}{dx^2} = \frac{\rho g}{S} x$$

2) $\frac{d^2y}{dx^2} = \frac{\rho g}{S} y$
3) $\frac{d^2y}{dx^2} = \sqrt{\frac{\rho g}{S}}$
4) $\frac{dy}{dx} = \sqrt{\frac{\rho g}{S}} x$

Ans. 2

Sol. According to Young-Laplace equation

$$\Delta \mathbf{P} = -\mathbf{S}\frac{\mathbf{d}^2\mathbf{y}}{\mathbf{dx}^2}$$

Pressure difference is $\Delta P = \rho gy$

Here,
$$S \frac{d^2 y}{dx^2} = \rho g y$$

 $\frac{d^2 y}{dx^2} = \frac{\rho g}{S} y$

 A microscope has an objective of focal length 2cm, eyepiece of focal length 4cm and the tube length of 40cm. If the distance of distinct vision of eye is 25cm, the magnification in the microscope is

1) 100	2) 125
3) 150	4) 250
-	

Sol.
$$M = \frac{L}{f_0} \times \frac{D}{f_e} = \frac{40}{2} \times \frac{25}{4} = 125$$

3. An electron (mass 9×10^{-31} kg and charge 1.6×10^{-19} C) moving with speed c/100 (c = speed of light) is injected into a magnetic field \vec{B} of magnitude 9×10^{-4} T perpendicular to its direction of motion. We wish to apply an uniform electric field \vec{E} together with the magnetic field so that the electron does not deflect from its path. Then (speed of light $c = 3 \times 10^8 \text{ ms}^{-1}$)

1) \vec{E} is perpendicular to \vec{B} and its magnitude is $27 \times 10^4 Vm^{-1}$

2) \vec{E} is perpendicular to \vec{B} and its magnitude is $27 \times 10^2 V m^{-1}$

3) $\vec{E}\,is$ parallel to $\vec{B}\,and$ its magnitude is $27 \times 10^2 V m^{-1}$

4) $\vec{E}\,is$ parallel to $\vec{B}\,and$ its magnitude is $27\times 10^4\,Vm^{-1}$

Ans. 2

Sol.
$$V = \frac{E}{B}$$

 $\frac{C}{100} = \frac{E}{9 \times 10^{-4}}$
 $E = \frac{9 \times 10^4 \times C}{100} = \frac{9 \times 10^{-4} \times 3 \times 10^8}{10^2}$
 $E = 27 \times 10^2 \text{ Vm}^{-1}$

4. There are two inclined surfaces of equal length (L) and same angle of inclination 45° with the horizontal. One of them is rough and the other is perfectly smooth. A given body takes 2 times as much time to slide down on rough surface than on the smooth surface. The coefficient of kinetic friction (μ_k) between the object and the rough surface is close to

Ans. 4

Sol.
$$\mu_{k} = \tan \theta \left(\frac{n^{2} - 1}{n^{2}} \right)$$

 $\mu_{k} = \tan 45^{0} \left(\frac{2^{2} - 1}{2^{2}} \right) = \frac{3}{4} = 0.75$

5. The kinetic energies of two similar cars A and B are 100 J and 225 J respectively. On applying breaks, car A stops after 1000m and car B stops after 1500m, If $F_{\scriptscriptstyle\! A}$ and $F_{\scriptscriptstyle\! B}$ are the forces applied by the breaks on cars A an B respectively, then the ratio $\frac{F_A}{F_B}$ is

 $\frac{2}{3}$

1

2

1)
$$\frac{3}{2}$$
 2) $\frac{2}{3}$
3) $\frac{1}{3}$ 4) $\frac{1}{2}$
Ans. 2
Sol. $F \propto \frac{E}{x}$
 $\frac{F_A}{E} = \frac{E_A}{E} \times \frac{x_B}{x} = \frac{100}{225} \times \frac{1500}{1000}$

$$\frac{\frac{A}{F_{B}}}{F_{B}} = \frac{\frac{A}{E_{B}}}{\frac{A}{K_{A}}} = \frac{\frac{A}{225}}{225} \times \frac{\frac{100}{1000}}{1000}$$
$$\frac{F_{A}}{F_{B}} = \frac{2}{3}$$

6. The current passing through the battery in the given circuit is

Ans. 2

Sol. 5Ω , 2.5Ω , 3Ω , 1.5Ω from Wheatstone network

 $5\Omega, 3\Omega$ are series $\Rightarrow 5 + 3 = 8\Omega$ $2.5\Omega, 1.5\Omega$ are series $\Rightarrow 2.5 + 1.5 = 4\Omega$

7. A bob of heavy mass m is suspended by a light string of length l. The bob is given a horizontal velocity v_0 as shown in figure. If the string gets slack at some point P making an angle θ from the horizontal, the ratio of the speed v of the bob at point P to its initial speed v_0 is

 The output (Y) of the given logic implementation is similar to the output of an/a <u>gate</u>

Ans. 4

- **Sol.** $y = (\overline{A + B}).(\overline{A.B})$ \therefore NOR Gate
- 9. The electric field in a plane electromagnetic wave is given by

 $E_{\rm z} = 60 \cos(5x + 1.5 \times 10^9 \, t) \, V$ / m .

Then expression for the corresponding magnetic field is (here subscripts denote the direction of the filed)

1) $B_v = 2 \times 10^{-7} \cos(5x + 1.5 \times 10^9 t)T$

- 2) $B_x = 2 \times 10^{-7} \cos(5x + 1.5 \times 10^9 t)T$
- 3) $B_z = 60\cos(5x + 1.5 \times 10^9 t)T$
- 4) $B_v = 60 \sin(5x + 1.5 \times 10^9 t)T$

Ans. 1

Sol. $E_z = 60 \cos(5x + 1.5 \times 10^9 t)V$

 $B_{y} = \frac{60}{3 \times 10^{8}} \cos(5x + 1.5 \times 10^{9} t) T$

10. A ball of mass 0.5kg is dropped from a height of 40 m. The ball hits the ground and rises to a height of 10 m. The impulse imported to the ball during its collision with the ground is (Take $g = 9.8 \text{ m/s}^2$)

1) 21 NS	2) 7 NS
3) 0	4) 84 NS

Ans. 1

- **Sol.** $m = 0.5 \, \text{kg}$
 - $h_1 = 40 \, m$
 - $h_2 = 10m$

Impulse = m
$$\left(\sqrt{2gh_1} + \sqrt{2gh_2}\right)$$

= $0.5\left(\sqrt{2 \times 9.8 \times 40} + \sqrt{2 \times 9.8 \times 10}\right)$

Impulse = 0.5(28 + 14) = 21NS

11. AB is a part of an electrical circuit (see figure). The potential difference " $V_A - V_B$ ", at the instant when current i = 2A and is increasing at a rate of 1 amp / second is

12. A 2 amp current is flowing through two different small circular copper coils having radii ratio 1:2. The ratio of their respective magnetic moments will be

1) 1:4
3) 2:1
Ans. 1
Sol.
$$M = NiA$$

 $\frac{M_1}{M_2} = \left(\frac{r_1}{r_2}\right)^2 = \left(\frac{1}{2}\right)^2 = \frac{1}{4}$

13. In a certain camera, a combination of four similar thin convex lenses are arranged axially in contact. Then the power of the combination and the total magnification in comparison to the power (p) and magnification (m) for each lens will be, respectively

1) 4p and 4m 2) p^4 and 4m

3) 4p and
$$m^4$$
 4) p^4 and m^4

Sol.
$$\frac{1}{f} = \frac{4}{P}$$

 $P_e = 4P$
 $m = m_1 \times m_2 \times m_3 \times m_4 = m^4$

- An oxygen cylinder of volume 30 litre has 14. 18.20 moles of oxygen. After some oxygen is withdrawn from the cylinder. Its gauge pressure drops to 11 atmospheric pressure at temperature 27° C. The mass of the oxygen withdrawn from the cylinder is nearly equal to [Given, $R = \frac{100}{12} J \text{ mol}^{-1} K^{-1}$, and molecular mass of $O_2 = 32$, 1 atm pressure = 1.01×10^5 N / m] 1) 0.125 kg 2) 0.144 kg 3) 0.116 kg 4) 0.156 kg Ans. 3 **Sol.** V = 30 litn = 18.2P = 11atm + 1 = 12atm $P = 12 \times 1.01 \times 10^{5}$ $P = 12.12 \times 10^5$ $n_2 = \frac{P_2 V}{RT} = \frac{12.12 \times 10^5 \times 30 \times 10^{-3}}{\frac{10}{12} \times 300} = 14.544$ $\Delta n = n_1 - n_2 = 18.20 - 14.544$ $\Delta n = 3.656$ $\Delta m = 3.656 \times \frac{32}{1000} = 0.116 \text{ kg}$
- 15. In some appropriate units, time (t) and position (x) relation of a moving particle is given by $t = x^2 + x$. The acceleration of the particle is

1)
$$-\frac{2}{(x+2)^3}$$

2) $-\frac{2}{(2x+1)^3}$
3) $+\frac{2}{(x+1)^3}$
4) $+\frac{2}{2x+1}$

Ans. 2

Sol.
$$t = x^2 + x$$

 $1 = (2x)\frac{dx}{dt} + \frac{dx}{dt} = (2x + 1)V$ $\left(\because V = \frac{dx}{dt}\right)$
 $\therefore V = \frac{1}{(2x + 1)}$
 $a = \frac{dV}{dt} = -\frac{2}{(2x + 1)^3}$

16. To an ac power supply of 220 V at 50 Hz, a resistor of 20Ω , a capacitor of reactance 25Ω and an inductor of reactance 45Ω are connected in series. The corresponding current in the circuit and the phase angle between the current and the voltage is, respectively

1) 7.8 A and 30° 2) 7.8 A and 45°
3) 15.6 A and 30° 4) 15.6 A and 45°
Ans. 2
Sol. (I)
$$i = \frac{V}{\sqrt{(X_L - X_C)^2 + R^2}} = \frac{220}{20\sqrt{2}} = \frac{11}{\sqrt{2}} = 7.8 \text{ A}$$

(II) Phase angle $\phi = \text{Tan}^{-1}\left(\frac{X_L - X_C}{R}\right)$

$$= \operatorname{Tan}^{-1}\left(\frac{20}{20}\right) = \operatorname{Tan}^{-1}(1) = 45^{\circ}$$

17. The sun rotates around its centre once in 27 days. What will be the period of revolution if the sun were to expand to twice its present radius without any external influence? Assume the sun to be a sphere of uniform density.

Ans. 4

Sol. $I_{\omega} = constant$

$$\mathbf{f}_{1}\omega_{1} = \mathbf{I}_{2}\omega_{2}$$

$$\mathbf{f}_{2}\mathbf{M}\mathbf{R}_{1}^{2}\frac{2\pi}{T_{1}} = \frac{2}{5}\mathbf{M}\mathbf{R}_{2}^{2}\frac{2\pi}{T_{2}}$$

$$T_{2} = \left(\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}\right)^{2} \times T_{1} = \left(\frac{2\mathbf{R}}{\mathbf{R}}\right)^{2} \times 27$$

$$T_{2} = \left(\frac{\mathbf{R}_{2}}{\mathbf{R}_{1}}\right)^{2} \times T_{1} = \left(\frac{2\mathbf{R}}{\mathbf{R}}\right)^{2} \times 27 = 4 \times 27$$

$$T_{2} = 108 \text{ Days}$$

18. A model for quantized motion of an electron in a uniform magnetic field B states that the flux passing through the orbit of the electron is n(h/e) where n is an integer, h is Planck's constant and e is the magnitude of electron's charge. According to the model, the magnetic moment of an electron in its lowest energy state will be (m is the mass of the electron)

1)
$$\frac{he}{\pi m}$$

2) $\frac{he}{2\pi m}$
3) $\frac{heB}{\pi m}$
4) $\frac{heB}{2\pi m}$

4

Sol.
$$\phi = n \frac{n}{e} = \frac{n}{e}$$

 $\phi = BA \Rightarrow \frac{h}{e} = B.\pi r^2$
 $r^2 = \frac{h}{e\pi B}$
 $I = \frac{e}{T} = \frac{e.eB}{2\pi m} = \frac{e^2 B}{2\pi m}$
 $\mu = IA = \frac{e^2 B}{2\pi m} \pi r^2 = \frac{e^2}{2m} \cdot \frac{h}{e\pi B}$
 $\mu = \frac{eh}{2\pi m}$

h h

Three identical heat conducing rods are 19. connected in series as shown in the figure. The rods on the sides have thermal conductivity 2K while that in the middle has thermal conductivity K. The left end of the combination is maintained at temperature 3T and the right end at T. The rods are thermally insulated from outside. In steady state, temperature at the left junction is T_1 and that at the right junction is

T₂. The ratio
$$\frac{T_1}{T_2}$$
 is
3T 2K K 2K T
1) $\frac{3}{2}$ 2) $\frac{4}{3}$
3) $\frac{5}{3}$ 4) $\frac{5}{4}$

Sol.
$$\frac{3T - T_1}{R_1} = \frac{T_1 - T_2}{R_2} = \frac{T_2 - T_1}{R_3}$$

 $\frac{3T - T_1}{\frac{L}{2KA}} = \frac{T_1 - T_2}{\frac{L}{KA}} = \frac{T_2 - T}{\frac{L}{2KA}}$
 $T_2 = \frac{3}{2}T$, $T_1 = \frac{5}{2}T$
 $\frac{T_1}{T_2} = \frac{5}{3}$

20. The plates of a parallel plate capacitor are separated by d. Two slabs of different dielectric constant K_1 and K_2 with thickness $\frac{3}{8}d$ and $\frac{d}{2}$ respectively are inserted in the capacitor.

Due to this, the capacitance becomes two times larger than when there is nothing between the plates.

d

If $K_1 = 1.25 K_2$, the value of K_1 is 1) 2.66 2) 2.33 3) 1.60 4) 1.33

Ans. 1

Sol.
$$C = \frac{\varepsilon_0 A}{d - [t_1 + t_2] + \frac{t_1}{K_1} + \frac{t_2}{K_2}}$$
$$2C_0 = \frac{\varepsilon_0 A}{d - \left(\frac{3d}{8} + \frac{d}{2}\right) + \frac{3d}{8(1.25k_2)} + \frac{d}{2K_2}}$$
$$K_2 = \frac{64}{30}$$
$$K_1 = 2.66$$

21. Two cities X and Y are connected by a regular bus service with a bus leaving in either direction every T min. A girl is driving scooty with a speed of 60 km/h in the direction X to Y notices that a bus goes past her every 30 minutes in the direction of her motion, and every 10 minutes in the opposite direction. Choose the correct option for the period T of the bus service and the speed (assumed constant) of the buses.

1) 9 min, 40 km/h 2) 25 min, 100 km/h 3) 10 min, 90 km/h 4) 15 min, 120 km/h Ans. 4

Sol.
$$\frac{t_1}{t_2} = \frac{V_{R_1}}{V_{R_2}}$$

 $\frac{30}{10} = \frac{V_B + V_S}{V_B - V_S}$
 $3V_B - 3V_S = V_B + V_S$
 $2V_B = 4V_S$
 $V_B = 2V_S = 2 \times 60 = 120 \text{ km / h}$
 $d = V_R t = 180 \times \frac{10}{60} = 30 \text{ km}$
 $t = \frac{d}{V_B} = \frac{30}{120} = \frac{1}{4} = 15 \text{ min}$

6

22. A uniform rod of mass 20 kg and length 5m leans against a smooth vertical wall making an angle of 60° with it. The other end rests on a rough horizontal floor. The friction force that the floor exerts on the rod is

4) $200\sqrt{3}$ N

 $(take g = 10 m / s^2)$

- 1) 100 N 2) $100\sqrt{3}$ N
- 3) 200 N
- Ans. 2

Sol. $f = N_2$

$$\begin{split} &N_1 = mg\\ &Torque \ about \ A\\ &N_2y - mgx = 0\\ &N_2y = mgx\\ &N_2 = 10 \times 10 \times \frac{\sqrt{3}}{2} = 100\sqrt{3} \ N\\ &f = N_2 = 100\sqrt{3} \ N \end{split}$$

23. In an oscillating spring mass system, a spring is connected to a box filled with sand. As the box oscillates, sand leaks slowly out of the box vertically so that the average frequency $\omega(t)$ and average amplitude A(t) of the system change with time t. Which one of the following options schematically depicts these changes correctly?

Sol. as $\omega = \sqrt{\frac{k}{m}}$

as m decreases ωincreases Amplitude decreases exponentially

24. A balloon is made of a material of surface tension S and its inflation outlet (from where gas is filled in it) has small area A. It is filled with a gas of density ρ and takes a spherical shape of radius R. When the gas is allowed to flow freely out of it, its radius r changes from R to 0 (zero) in time T. If the speed v(r) of gas coming out of the balloon depends on r as r^a and $T \propto S^\alpha A^\beta \rho^\gamma R^\delta$ then

1)
$$a = \frac{1}{2}, \alpha = \frac{1}{2}, \beta = -1, \gamma = +1, \delta = \frac{3}{2}$$

2) $a = -\frac{1}{2}, \alpha = -\frac{1}{2}, \beta = -1, \gamma = -\frac{1}{2}, \delta = \frac{5}{2}$
3) $a = -\frac{1}{2}, \alpha = -\frac{1}{2}, \beta = -1, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$
4) $a = \frac{1}{2}, \alpha = \frac{1}{2}, \beta = -\frac{1}{2}, \gamma = \frac{1}{2}, \delta = \frac{7}{2}$

Ans. 3

Sol.
$$T \propto s^{\alpha} A^{\beta} \rho^{\gamma} R^{\delta}$$

 $T = \left[MT^{-2} \right]^{\alpha} \left[L^{2} \right]^{\beta} \left[ML^{-3} \right]^{\gamma} \left[L \right]^{\delta}$
 $\alpha = -\frac{1}{2} \text{ as } \alpha + \gamma = 0$
 $\gamma = -\alpha = \frac{1}{2}$

α • B

25. Consider the diameter of a spherical object being measured with the help of a Vernier callipers. Suppose its 10 Vernier Scale Divisions (V.S.D.) are equal to its 9 Main Scale Divisions (M.S.D.). The least division in the M.S. is 0.1 cm and the zero of V.S. is at x = 0.1cm when the jaws of Vernier callipers are closed.

If the main scale reading for the diameter is M = 5 cm and the number of coinciding vernier division is 8, the measured diameter after zero error correction, is

```
1) 5.18 cm 2) 5.08 cm
3) 4.98 cm 4) 5.00 cm
Ans. 3
```

```
Sol. 10 VSD = 9 MSD; (1MSD =0.1cm)
```

1 VSD=
$$\frac{9}{10}$$
 MSD

L.C = 1MSD - 1VSD

 $= 1 \text{MSD} - \frac{9}{10} \text{MSD} = \frac{1}{10} \text{MSD}$ = 0.1 × 0.1cm = 0.01cm Zero error is =+ve = 0.1 cm, correction = -0.1cm MSR=5cm, V.C=8 Diameter = MSR + V.C × L.C + Zero correction = 5 + 8 × 0.01 - 0.1 = 5.08 - 0.1 = 4.98 cm

26. A parallel plate capacitor made of circular plates is being charged such that the surface charge density on its plates is increasing at a constant rate with time. The magnetic field arising due to displacement current is :

1) zero at all places

2) constant between the plates and zero outside, the plates

3) non-zero everywhere with maximum at the imaginary cylindrical surface connecting peripheries of the plates

4) zero between the plates and non-zero outside

Ans. 3

Sol.
$$i_d = \epsilon_0 A \frac{dE}{dt}, \ j = \epsilon_0 \frac{d}{dt} \left(\frac{\sigma}{\epsilon_0} \right)$$

 $j = \frac{d\sigma}{dt}$
Between plates
 $B_{in} \times 2\pi r = \mu_0 i_d$
 $B \times 2\pi r = \mu_0 (JA)$
 $B \times 2\pi r = \mu_0 \times \left(\frac{d\sigma}{dt} \right) \times \pi r^2$
 $B_{in} = \frac{\mu_0 r}{2} \left(\frac{d\sigma}{dt} \right)$

$$\therefore B_{in} \propto r$$

Out side plates

$$B \times 2\pi r = \mu_0 \times \left(\frac{d\sigma}{dt}\right) \times \pi R^2$$
$$B_{out} = \left(\frac{\mu_0 R^2}{2r}\right) \left(\frac{d\sigma}{dt}\right) \Rightarrow \quad B_{out} \propto \frac{1}{r}$$

 An unpolarized light beam travelling in air is incident on a medium of refractive index 1.73 at Brewster's angle. Then-

1) reflected light is completely polarized and the angle of reflection is close to 60°

2) reflected light is partially polarized and the angle of reflection is close to 30°

3) both reflected and transmitted light are perfectly polarized with angles of reflection and refraction close to 60° and 30° , respectively.

4) transmitted light is completely polarized with angle of refraction close to 30°

Ans. 1

Sol. $\mu = \tan \theta_{\rm p} \Rightarrow \theta_{\rm p} = \tan^{-1}(1.73) = 60^{\circ}$

and reflected ray is completely polarised and Angle of reflection is close to 60°

28. Two identical charged conducting spheres A and B have their centres separated by a certain distance. Charge on each sphere is q and the force of repulsion between them is F. A third identical uncharged conducting sphere is brought in contact with sphere A first and then with B and finally removed from both. New force of repulsion between spheres A and B (Radii of A and B are negligible compared to the distance of separation so that for calculating force between them they can be considered as point charges) is best given as :

1)
$$\frac{3F}{5}$$
 2) $\frac{2F}{3}$ 3) $\frac{F}{2}$ 4) $\frac{3F}{8}$

Ans. 4

Sol. When A and B are separated by distance r then

$$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \frac{\mathbf{q}\mathbf{q}}{\mathbf{r}^2} \dots (1)$$

Initially, A has charge q and C has charge 0

After touching A, both A and C have charge $\frac{q}{2}$ After touching B, both B and C have charge

$$\frac{1+\frac{4}{2}}{2} = \frac{3q}{4}$$

then new force of repulsion between A and B is

$$F^{1} = \frac{1}{4\pi\varepsilon_{0}} \frac{\frac{q}{2} \frac{3q}{4}}{r^{2}} \dots (2)$$

From (1) and (2) $F^1 = \frac{3F}{8}$

29. A container has two chambers of volumes $V_1=2$ litres and $V_2=3$ litres separated by a partition made of a thermal insulator. The chambers contains $n_1 = 5$ and $n_2 = 4$ moles of ideal gas at pressures $p_1 = 1$ atm and $p_2 = 2$ atm , respectively. When the partition is removed, the mixture attains an equilibrium pressure of :

1) 1.3 atm	2) 1.6 atm
3) 1.4 atm	4) 1.8 atm

Sol. $P_{equ}(V_1 + V_2) = P_1V_1 + P_2V_2$ $P_{equ}(2+3) = 1 \times 2 + 2 \times 3$ $P_{equ} = \frac{8}{5} = 1.6$ atm

30. A particle of mass m is moving around the origin with a constant force F pulling it towards the origin. If Bohr model is used to describe its motion, the radius r of the nth orbit and the particle's speed v in the orbit depend on n as

2) $r \propto n^{1/3}$; $v \propto n^{2/3}$

1)
$$r \propto n^{1/3}; v \propto n^{1/3}$$
2) $r \propto n^{1/3}; v \propto n^{2/3}$ 3) $r \propto n^{2/3}; v \propto n^{1/3}$ 4) $r \propto n^{4/3}; v \propto n^{-1/3}$

Sol. $F = \frac{mv^2}{r}$ $v = \sqrt{\frac{Fr}{Fr}} \dots (1)$

$$\sqrt{m}$$

 $mvr = \frac{nh}{2\pi}$

$$v = \frac{nh}{2\pi mr} \dots (2)$$

From (1) and (2),
$$\frac{Fr}{m} = \frac{n^2 h^2}{4\pi^2 m^2 r^2}$$
$$\Rightarrow r^3 \propto n^2 \Rightarrow r \propto n^{2/3}$$
$$v = \frac{nh}{2\pi mr} = \frac{nh}{2\pi m \times n^{2/3}} \because \left[r \propto n^{2/3} \right]$$
$$v \propto n^{1/3}$$

The radius of Martian orbit around the Sun is 31. about 4 times the radius of the orbit of Mercury. The Martian year is 687 Earth days. Then which of the following is the length of 1 year on Mercury ? 1) 88 earth days 2) 225 earth days 3) 172 earth days 4) 124 earth days Ans. 1

Sol. $T^2 \propto R^3$

 $R_{Martian} = 4R_{mercurv}$ $T_{Martian} = 687 Earth days$ $\left(\frac{T_{Martian}}{T_{Mercury}}\right)^2 = \left(\frac{R_{Marian}}{R_{Mercury}}\right)^3$ $\frac{687}{}=4^{3/2}$

 $T_{Mer} = 85.875 Earth days$ $T_{Mer} \approx 88$ Earth days

32. A body weighs 48 N on the surface of the earth. The gravitational force experienced by the body due to the earth at a height equal to one-third the radius of the earth from its surface is: 1) 16 N 2) 27 N 3) 32 N 4) 36 N

Ans. 2

Sol.
$$g(h) = \frac{g}{\left(1 + \frac{h}{R}\right)^2}$$

 $mg(h) = \frac{mg}{\left(1 + \frac{R}{3R}\right)^2} \left[\because h = \frac{R}{3}\right]$
 $= \frac{48}{\left(\frac{4}{3}\right)^2}$
 $F = mg(h) = 27N$

A wire of resistance R is cut into 8 equal 33. pieces. From these pieces two equivalent resistances are made by adding four of these together in parallel. Then these two sets are added in series. The net effective resistance of the combination is :

1)
$$\frac{R}{64}$$
 2) $\frac{R}{32}$ 3) $\frac{R}{16}$ 4) $\frac{R}{8}$

Ans. 3

Sol.
$$R_{eff} = \frac{R/8}{4} + \frac{R/8}{4}$$

 $= \frac{R}{32} + \frac{R}{32} = \frac{R}{16}$

34. De-Broglie wavelength of an electron orbiting in the n = 2 state of hydrogen atom is close to (Given Bohr radius = 0.052 nm) 1) 0.067 nm 2) 0.67 nm 3) 1.67 nm 4) 2.67 nm Ans. 2 **Sol.** $2\pi r_n = n\lambda$

$$= 3.14 \times 0.052 nm \times 4 = 0.67 nm$$

An electric dipole with dipole moment 35. 5×10^{-6} Cm is aligned with the direction of a uniform electric field of magnitude $4\!\times\!10^5~N\,/\,C\,.$ The dipole is then rotated through an angle of 60° with respect to the electric field. The change in the potential energy of the dipole is : 2) 1.0 J 1) 0.8 J 3) 1.2 J 4) 1.5 J Ans. 2 **Sol.** $P = 5 \times 10^{-6} cm$

 $E = 4 \times 10^5 N / C$ $\theta = 60^{\circ}$ $\Delta P.E = PE(1 - \cos \theta)$ $= 5 \times 10^{-6} \times 4 \times 10^{5} \times \frac{1}{2} = 10 \times 10^{-1} = 1$ J

A constant voltage of 50 V is maintained 36. between the points A and B of the circuit branch CD of the circuit is :

37. A photon and electron (mass m) have the same energy E. The ratio ($\lambda_{photon} / \lambda_{electron}$) of their de Broglie wavelengths is: (c is the speed of light)

1)
$$\sqrt{E/2m}$$

3) $c\sqrt{\frac{2m}{E}}$
2) $c\sqrt{2mE}$
4) $\frac{1}{c}\sqrt{E/2m}$

Ans. 3

Sol.
$$\frac{\lambda_{\text{photon}}}{\lambda_{\text{electron}}} = \frac{hc}{E} \times \frac{\sqrt{2mE}}{h} = c\sqrt{\frac{2mE}{E^2}} = c\sqrt{\frac{2m}{E}}$$

Photoelectric

38. Which of the following options represent the variation of photoelectric current with property of light shown on the x -axis?

10

39. A sphere of radius R is cut from a larger solid sphere of radius 2R as shown in the figure. The ratio of the moment of -inertia of the smaller sphere to that of the rest part of the sphere about the Y -axis is :

Ans. 3

$$\textbf{Sol.} \quad \boldsymbol{M}_{small} =$$

1) $\frac{7}{8}$

$$I_{small} = \frac{7MR^2}{5 \times 8} = \frac{7MR^2}{40}$$
$$I_{remaining} = \frac{2M(2R)^2}{5} - \frac{7MR^2}{40}$$
$$= \frac{8MR^2}{5} - \frac{7MR^2}{40}$$
$$= \frac{57MR^2}{40}$$
$$\frac{I_{small}}{I_{remaining}} = \frac{\frac{7MR^2}{40}}{\frac{57MR^2}{40}} = \frac{7}{57}$$

Μ

8

40. A full wave rectifier circuit with diodes (D_1) and (D_2) is shown in the figure. If input supply voltage $V_{in} = 220sin(100\pi t)$ volt, then at t = 15msec

- 1) D₁ is forward biased, D₂ is reverse biased
 2) D₁ is reverse biased, D₂ is forward biased
- 3) D_1 and D_2 both are forward biased
- 4) D_1 and D_2 both are reverse biased

Ans. 2

Sol. $T = \frac{2\pi}{\omega} = \frac{2\pi}{100\pi} = \frac{1}{50} = 20 \text{ ms}$

- At t = 15 ms, input is negative half cycle
- \therefore D₁ is reverse biased

41. Two gases A and B are filled at the same pressure in separate cylinders with movable pistons of radius r_A and r_B , respectively. On supplying an equal amount of heat to both the systems reversibly under constant pressure, the pistons of gas A and B are displaced by 16 cm and 9 cm, respectively. If the change in their internal energy is the same, then the ratio r_A / r_B is equal to

1)
$$\frac{4}{3}$$
 2) $\frac{3}{4}$ 3) $\frac{2}{\sqrt{3}}$ 4) $\frac{\sqrt{3}}{2}$
Ans. 1
Sol. $\frac{nRdT}{\gamma - 1} = dU = \frac{pdv}{\gamma - 1}$
 $p_1 dv_1 = p_2 dv_2$
 $\frac{F}{\pi r_1^2} dx_1 A = \frac{F}{\pi r_2^2} dx_2 A$
G $\frac{r_1}{r_2} = \sqrt{\frac{dx_1}{dx_2}} = \frac{16}{9} = \frac{4}{3}$

42. A physical quantity P is related to four observations a,b,c and d as follows:

$$P = a^3 b^2 / c \sqrt{d}$$

The percentage errors of measurement in a,b,c and d are 1%,3%,2% and 4% respectively. The percentage error in the quantity P is

1) 10% 2) 2% 3) 13% 4) 15% **Ans. 3**

Sol.
$$\frac{\Delta p}{p}\% = 3\frac{\Delta a}{a}\% + 2\frac{\Delta b}{b}\% + \frac{\Delta c}{c}\% + \frac{1}{2}\frac{\Delta d}{d}\%$$
$$= \left(3\times 1 + 2\times 3 + 2 + \frac{1}{2}\times 4\right)$$
$$= 13\%$$

43. The intensity of transmitted light when a polaroid sheet, placed between two crossed polaroids at 22.5° from the polarization axis of one of the polaroid, is (I₀ is the intensity of polarised light after passing through the first polaroid):

1)
$$\frac{I_0}{2}$$
 2) $\frac{I_0}{4}$ 3) $\frac{I_0}{8}$ 4) $\frac{I_0}{16}$

Ans. 3

Sol. $I_3 = I_0 \cos^2 \theta \cos^2 (90 - \theta)$

$$= \frac{I_0}{4} \sin^2 2\theta = \frac{I_0}{4} \sin^2 2 \times 22.5 = \frac{I_0}{4} \sin^2 45^0$$
$$= \frac{I_0}{4} \times \frac{1}{2} = \frac{I_0}{8}$$

44. Two identical point masses P and Q, suspended from two separate massless springs of spring constants k_1 and k_2 , respectively, oscillate vertically. If their maximum speeds are the same. the ratio (A_O / A_P) of the amplitude A_O of mass Q to

the amplitude A_P of mass P is:

1) $\frac{k_2}{k_1}$ 2) $\frac{k_1}{k_2}$ 3) $\sqrt{\frac{k_2}{k_1}}$ 4) $\sqrt{\frac{k_1}{k_2}}$

Ans. 3
Sol.
$$A_1\omega_1 = A_2\omega_2$$

 $A_1\sqrt{\frac{k_1}{m}} = A_2\sqrt{\frac{k_2}{m}}$
 $\frac{A_1}{A_2} = \sqrt{\frac{k_2}{k_1}}$

45. A pipe open at both ends has a fundamental frequency f in air. The pipe is now dipped vertically in a water drum to half of its length, The fundamental frequency of the air column is now equal to:

4) 2f

1)
$$\frac{f}{2}$$
 2) f 3) $\frac{3f}{2}$

Ans. 2

Sol.
$$f_0 = \frac{v}{2\ell}, f_c = \frac{v}{4\frac{\ell}{2}} = \frac{v}{2\ell} = f_0$$

CHEMISTRY

46. The ratio of the wavelengths of the light absorbed by a Hydrogen atom when it undergoes $n = 2 \rightarrow n = 3$ and $n = 4 \rightarrow n = 6$ transitions, respectively, is

1)
$$\frac{1}{36}$$
 2) $\frac{1}{16}$ 3) $\frac{1}{9}$ 4) $\frac{1}{4}$

Ans. 4

Sol.
$$\bar{\nu}_1 = \frac{1}{\lambda_1} = R_H \left[\frac{1}{4} - \frac{1}{9} \right] \times = R_H \left[\frac{5}{36} \right] \dots \dots (1)$$

$$\bar{\nu}_{2} = \frac{1}{\lambda_{2}} = R_{H} \left[\frac{1}{16} - \frac{1}{36} \right] \times = R_{H} \left[\frac{20}{16 \times 36} \right] \dots \dots \dots (2)$$

The ratio of Eqn 2 to Eqn 1 gives

$$\frac{\lambda_1}{\lambda_2} = \frac{4}{16} = \frac{1}{4}$$

47. Which of the following statements are true?A. Unlike Ga that has a very high melting point, Cs has a very low melting point.B. On Pauling scale, the electronegative values of N and Cl are not the same.

C. Ar, K^+ , Cl^- , Ca^{2+} , and S^{2-} are all isoelectronic species.

D. The correct order of the first ionization enthalpies of Na.Mg, Al. and Si is

Si > Al > Mg > Na.

E. The atomic radius of Cs is greater than that of Li and Rb.

Choose the **correct** answer from the option given below:

1) A, B, and E only2) C and E only3) C and D only4) A, C, and E only

Ans. **2**

Sol. Conceptual

48. Match List I with List II

	List-		List – II
	Ι		(Group Number in Cation
	(Ion)		Analysis
А	Co ²⁺	Ι	Group-1
В	Mg^{2+}	II	Group-III
С	Pb ²⁺	III	Group-IV
D	A1 ³⁺	IV	Group-VI

Choose the correct answer from the of given below:

1) A-III, B-1V, C-II, D-I 2) A-III, B-IV, C–I, D-II 3) A-III, B-II, C-1V, D-I 4) A-III, B-II, C-I, D-IV 5. **2**

NEET - 2025 (CODE - 45)

49.	Predict the major product 'P' in the following sequence of reactions – $\begin{array}{c} & (i) \text{ HBr, benzoyl peroxide} \\ & (ii) \text{ KCN} & P \\ & (iii) \text{ Na(Hg)/C}_2\text{H}_5\text{OH} & P \\ & (Major) \end{array}$ 1) $\begin{array}{c} & CH_3 & 2) & CH_3 \\ & CH_2\text{NH}_2 & 2) & CH_3 \\ & CH_2\text{NH}_2 & 4) & CH_3\text{NC} \end{array}$		r of He ⁺ = $52.9 \times \frac{n^2}{z}$ nm = $\frac{52.9}{2}$ = 26.45 nm E of Li ⁺² \Rightarrow E _n = $-2.18 \times 10^{-18} \times \frac{3^2}{1^2}$ = $-2.18 \times 10^{-18} \times 9$ = -19.62×10^{-18} J / atom r of Li ⁺² \Rightarrow r _n = $52.9 \times \frac{1}{3}$
Ans. Sol	1		-17.0 pm
\bigcirc	$ \overset{CH_3}{\xrightarrow{HDr}} \overset{HDr}{\xrightarrow{Bernoyl/Pressets}} \overset{CH_3}{\xrightarrow{Br}} \overset{KON}{\xrightarrow{CH_3}} \overset{CH_3}{\xrightarrow{CH_3}} \overset{CH_3}{CH_$	51.	Which of the following are paramagnetic? A. $[NiCl_4]^{2-}$ B. $Ni(CO)_4$
50.	Energy and radius of first Bohr orbit of He ⁺		C. $\left[\operatorname{Ni}(\operatorname{CN})_{4}\right]^{2}$ D. $\left[\operatorname{Ni}(\operatorname{H}_{2}\operatorname{O})_{6}\right]^{2}$
	and Li^{2+} are		E. Ni $(PPh_3)_4$
	$\left[\text{Given R}_{\text{H}} = 2.18 \times 10^{-18} \text{ J}, a_0 = 52.9 \text{ pm}\right]$		given below:
	1) $E_n(Li^{2+}) = -19.62 \times 10^{-18} J;$		1) A and C only2) B and E only3) A and D only4) A, D and E only
	$r_n(Li^{2+}) = 17.6 \text{ pm}, E_n(He^+) = -8.72 \times 10^{-18} \text{ J};$	Ans.	3
	$r_n(He^+) = 26.4 pm$	501.	Hybridisation (no. of unpaired electrons)
	2) $E_n(Li^{2+}) = -8.72 \times 10^{-18} J;$ $r_n(Li^{2+}) = 26.4 pm,$ $E_n(He^+) = -19.62 \times 10^{-18} J;$ $r_n(He^+) = 17.6 pm$ 3) $E_n(Li^{2+}) = -19.62 \times 10^{-18} J;$ $r_n(Li^{2+}) = 17.6 pm$ $E_n(He^+) = -8.72 \times 10^{-16} J;$ $r_n(He^+) = 26.4 pm$ 4) $E_n(Li^{2+}) = -8.72 \times 10^{-16} J;$ $r_n(Li^{2+}) = 17.6 pm$ $E_n(He^+) = -19.62 \times 10^{-16} J;$ $r_n(He^+) = 17.6 pm$	52. Ans. Sol.	 Given below are two statements: Statement I: Like nitrogen that can form ammonia, arsenic can form arsine. Statement II: Antimony cannot form antimony pentoxide. In the light of the above statements, choose the most appropriate answer from the options given below: Both Statement I and Statement II are correct Both Statement I and Statement II are incorrect Statement I is correct but Statement II is incorrect Statement I is incorrect but Statement II is correct Statement -I: NH₃, ASH₃ exist Statement -II: Sb₂O₅ exist
Ans. Sol.	1 E of He ⁺ \Rightarrow E _n = -2.18 × 10 ⁻¹⁸ × $\left(\frac{Z^2}{n^2}\right)$ J / atom	55.	configurations belong to main group elements? A. [Ne]3 s ¹ B [Ar]3d ³ 4s ²
	$He^+ \Rightarrow Z = 2, n = 1$		C. $[Kr]4d^{10}5s^25p^5$ D. $[Ar]3d^{10}4s^1$
	E ₁ of He ⁺ = -2.18 × 10 ⁻¹⁸ × $\frac{2^2}{1^2}$		 E. [Rn]51⁻6d⁻7s⁻ Choose the correct answer from the option given below: 1) B and E only 2) A and C only
	$= -2.18 \times 10^{-18} \times 4$ = -8.72 \times 10^{-18} J / atom	Ans.	3) D and E only 4) A, C and D only 2

regarded as main

Sol.

NEET - 2025 (CODE - 45)

In periodic table s and P-block elements are 58. Which one of the following compounds can group elements exist as cis-trans isomers? or 1) Pent - 1-ene 2) 2 - Methylhex-2-ene 3) 1,1-Dimethylcyclopropane 4) 1,2-Dimethylcycolohexane Ans. 4 CH_3 CH_3 Sol. exhibits Cis and Trans isomerism 59. Phosphoric acid ionizes in three steps with their ionization constant values $\mathrm{K}_{\mathrm{a}_1},\ \mathrm{K}_{\mathrm{a}_2}$ and $\ \mathrm{K}_{\mathrm{a}_3}$, respectively, while K is the overall ionization constant. Which of the following statements are true? A. $\log K = \log K_{a_1} + \log K_{a_2} + \log K_{a_3}$ B. H_3PO_4 is a stronger acid than $H_2PO_4^-$ and HPO_4^{2-} . $C. K_{a_1} > K_{a_2} > K_{a_3}$ D. $K_{a_1} = \frac{K_{a_3} + K_{a_2}}{2}$ Choose the correct answer from the options given below: 1) A and B only 2) A and C only 3) B, C and D only 4) A,B and C only Ans. 4 Sol. $\Rightarrow \log K = \log K_{a_1} + \log K_{a_2} + \log K_{a_3}$ \Rightarrow H₃PO₄ is stronger than H₂PO₄⁻ & HPO₄²⁻ $\Rightarrow K_{a_1} > K_{a_2} > K_{a_3}$ (correct) Which one of the following reactions does NOT 60. give benzene as the product? 1)

- O Na <u>sodalime</u> 2) Mo₂O₂ n-hexane 773K. 10–20 atm 3) $H - C \equiv C - H$ red hot Iron Tube ™_{≡N} Θ

Ans. 4

representative elements. Hence A and C options are correct. 54. Dalton's Atomic theory could not explain which of the following? 1) Law of conservation of mass 2) Law of constant -proportion 3) Law of multiple proportion 4) Law of gaseous volume Ans. 4 Sol. Conceptual 55. Consider the following compounds: $\underline{K}O_2, H_2O_2$ and $H_2\underline{S}O_4$. The oxidation states of the underlined elements in them are, respectively, 1) +1, -1, and +62) +2,-2, and +6 3) +1, -2, and +44) +4, -4, and +6Ans. 1 Sol. +1, -1, +6KO₂: - Potassium forms Super oxide H₂O₂ : - Peroxides O.NO is - 1 H_2SO_4 : – Sulphur oxidation state is +6 If the half-life $(t_{1/2})$ for a first order reaction 56. is I minute, then the time required for 99.9% completion of the reaction is closest to: 1) 2 minutes 2) 4 minutes 3) 5 minutes 4) 10 minutes Ans. 4 $t_{99.9\%} = 10 \times t_{\frac{1}{2}}$ Sol. $=10 \times 1 = 10 \min$ The correct order of the wavelength of light 57. absorbed by the following complexes is, B. $[Co(CN)_6]^{3-}$ A. $\left[\text{Co}(\text{NH}_3)_6 \right]^{3+}$ C. $\left[Cu(H_2O)_4 \right]^{2+}$ D. $\left[Ti(H_2O)_6 \right]^{3+}$ Choose the correct answer from the options given below:

1) B < D < A < C2) B < A < D < C3) C < D < A < B4) C < A < D < B

Ans. 2

Sol. Strength of the ligand $\alpha \frac{1}{\lambda}$

61. If the molar conductivity $\left(\Lambda_{m}\right)$ of a

0.050 mol L⁻¹ solution of a monobasic weak acid is 90 S cm² mol⁻¹, its extent (degree) of dissociation will be [Assume $\Lambda^{0}_{+} = 349.6 \, \text{S cm}^{2} \, \text{mol}^{-1}$ and $\Lambda^{0}_{-} = 50.4 \, \text{S cm}^{2} \, \text{mol}^{-1}$.] 1) 0.115 2) 0.125 3) 0.225 4) 0.215 Ans. **3** Sol. $\lambda^{c}_{m} = 0.050 \, \text{mol} \, \text{L}^{-1}$ conc = 90 s cm² mol⁻¹ $\alpha = ?$ $\lambda^{\alpha}_{m} = 349.6 + 50.4$ $\alpha = \frac{\lambda^{c}_{m}}{\lambda^{\alpha}_{m}}$ $\alpha = \frac{90}{400} = 0.225$

62. Given below are two statements:

Statement I: A hypothetical diatomic molecule with bond order zero is quite stable. Statement II: As bond order increases, the bond length increases.

In the light of the above statements, choose the most appropriate answer from the options given below:

- 1) Both Statement I and Statement II are true
- 2) Both Statement I and Statement II are false
- 3) Statement I is true but Statement II is false
- 4) Statement I is false but Statement II is true

Ans. **2**

Sol. **Statement-I:** incorrect molecules with B.O zero is unstable Ex: He₂

Statement II: Incorrect $B.O \propto \frac{1}{B.L}$

63. Out of the following complex compounds, which of the compound will be having the minimum conductance in solution?

1)
$$\left[\operatorname{Co}(\operatorname{NH}_3)_3\operatorname{Cl}_3\right]$$
 2) $\left[\operatorname{Co}(\operatorname{NH}_3)_4\operatorname{Cl}_2\right]$
3) $\left[\operatorname{Co}(\operatorname{NH}_3)_6\right]\operatorname{Cl}_3$ 4) $\left[\operatorname{Co}(\operatorname{NH}_3)_5\operatorname{Cl}\right]\operatorname{Cl}$

- Ans. **4**
- Sol. A & b are non-conductors $C \rightarrow$ no. of Ions = 4

No. of Ions = 2

No. of Ions \uparrow conductance in \uparrow

64. Match List - I with List - II

	Column- I		Column - II
А	XeO ₃	Ι	sp ³ d; linear
В	XeF_2	II	sp ³ ; pyramidal
С	XeOF ₄	III	sp ³ d ³ ; distorted octahedral
D	XeF ₆	IV	sp ³ d ² ; square pyramidal

Choose the correct answer from the options given below: 1) A-II, B-I, C-IV, D-III 2) A-II, B-I, C-III, D-IV 3) A-IV, B-II, C-III, D-I 4) A-IV, B-II, C-I, D-III

Ans. **1**

Sol. A) $XeO_3 - Sp^3 - Pyramidal$

B) $XeF_2 - Sp^3d - linear$

 $C) XeOF_4 - Sp^3d^2 - Square Pyramidal$

D) $XeF_6 - Sp^3d^3 - Distorted Octahedral$

65. $C(s) + 2H_2(g) \rightarrow CH_4(g); \Delta H = -74.8 \text{ kJ mol}^{-1}$ Which of the following diagrams gives an accurate representation of the above reaction? [R \rightarrow reactants P \rightarrow products]

Ans. **1**

Sol. $\Delta H = -74.8 (\Delta H = Negative)$

 \therefore Energy of Reactants > Energy of products.

66. Match List - I with List - II

	List – I (Example)		List -II (Type of Solution)
А	Humidity	Ι	Solid in solid
В	Alloys	II	Liquid in gas
С	Amalgams	III	Solid in gas
D	Smoke	IV	Liquid in solid

Choose the correct answer from the options given below:

1) A-II, B-IV, C-I, D-III 2) A-II, B-I, C-IV, D-III 3) A-III, B-I, C-IV, D-II 4) A-III, B-II, C-I, D-IV

Ans. 2

Sol. NCERT Conceptual

A	57. T Ans.		orrect order of dec ne given amines is (-methylaniline > anamine > N -ethyl (-ethylethanamine zenamine > N -me (-ethylethanamine methylaniline > bo enzenamine > eth methylaniline > N	reas ben letha > e thyla > e enzen ana: -eth	ing basic strength zenamine > namine thanamine > miline thanamine > namine mine > ylethanamine	70.	The correct order of decreasing acidity of the following aliphatic acids is: 1) $(CH_3)_3 CCOOH > (CH_3)_2 CHCOOH >$ $CH_3COOH > HCOOH$ 2) $CH_3COOH > (CH_3)_2 CHCOOH >$ $(CH_3)_3 CCOOH > HCOOH$ 3) $HCOOH > CH_3COOH >$ $(CH_3)_2 CHCOOH > (CH_3)_3 CCOOH$			
6	58.	 NCERT Conceptual Among the following, choose the ones with equal number of atoms. A. 212 g of Na₂CO₃ (s) [molar mass = 106 g] B. 248 g of Na₂O(s) [molar mass = 62 g] C. 240 g of NaOH(s) [molar mass = 40 g] 					 (CH₃)₂ CHCOOH > CH₃COOH Ans. 3 Sol. H - COOH > CH₃COOH > (CH₃)₂ CH - COOH > (CH₃)₃ CCOOH As No of CH₃ ↑ EDG tendency ↑ Acidic strength ↓ 71. Given below are two statements: Statement -I : Ferromagnetism is considered as an extreme form of paramagnestism: Statement -II: The number of unpaired electrons in a Cr²⁺ion (Z = 24) is the same at that of a Nd³⁺ion (Z = 60) 			
	 D. 12 g of H₂(g)[molar mass = 2 g] E. 220 g of CO₂(g) [molar mass = 44g) Choose the correct answer from the options given below: 1) A, B, and C only 2) A, B, and D only 3) B, C, and D only 4) B, D, and E only 					71.				
A	Ans.	ns. 2					In +h	$\Delta = 1$ $\Delta = 1011(\Delta = 00)$	/	ments choose the
S	Sol. A \Rightarrow No of atoms = $\frac{W}{M.wt} \times No$ of atoms $\times N_A$ = $\frac{212}{106} \times 6 \times N_A = 12 \times N_A$ B \Rightarrow No of atoms = $\frac{248}{62} \times 3 \times N_A = 12 \times N_A$ C \Rightarrow No of atoms = $\frac{240}{40} \times 3 \times N_A = 18 \times N_A$ D \Rightarrow No of atoms = $\frac{12}{2} \times 2 \times N_A = 12 \times N_A$ E \Rightarrow No of atoms = $\frac{220}{44} \times 3 \times N_A = 15 \times N_A$				Ans. Sol. 72.	corre 1) Be 2)Be 3) St 4) St 4) St 3 Ferr extre Cr ² Nd ³	ect answer from the oth Statement I and oth Statement I is true but tatement I is false but omagnetism is consistent omagnetism of paramage $f^{+} = [Ar] 3d^{4}$ $g^{+} = [Xe] 5f^{3}$	optio Stat Stat It Sta It Sta It St Idere	tement II are true ement II are false atement II is false atement II is true ed as an tism:	
6	69. Match List I with List II.					Listi-I List –II			t –II	
			List – I (Name of Vitamin)		List – II (Deficiency disease)		(Mi A	xture) $CHCl_3 + C_6H_5NH_2$	(Me ser	ethod of paration Distillation under reduced
		A	Vitamin B ₁₂	Ι	Cheilosis					pressure
		B C	Vitamin D Vitamin B ₂	II III	Convulsions Rickets		В	Crude oil in petroleum industry	II	Steam distillation
		D	Vıtamin B ₆	IV	Pernicious anaemia		С	Glycerol from	III	Fractional

Choose the correct answer from the options given below.

1) A-I, B-III, C-II, D-IV 2) A-IV, B-III, C-I, D-II 3) A-II, B-III, C-I, D-IV 4) A-IV, B-III, C-II, D-I

Ans. **2**

distillation

distillation

Simple

IV

Choose the **correct** answer from the options

Spent -lye

Aniline -water

D)

given below

1) A-IV, B-III, C-I, D-II 2) A-IV, B-III, C-II, D-I 3) A-III, B-IV, C-I, D-II 4) A-III, B-IV, C-II, D-I Ans. **1**

Sol. The correct matching is as follows

Lis	ti-I	List –II			
(Mi	xture)	(Method of separation			
А	$\mathrm{CHCl}_3 + \mathrm{C}_6\mathrm{H}_5\mathrm{NH}_2$	IV	Simple distillation		
В	Crude oil in petroleum industry	III	Fractional distillation		
С	Glycerol from Spent -lye	Ι	Distillation under reduced pressure		
D)	Aniline -water	II	Steam distillation		

73. For the reaction $A(g) \rightleftharpoons 2B(g)$, the

backward reaction rate constant is higher than the forward reaction rate constant by a factor of 2500, at 1000K

[Given: R=0.0831 L atm $mol^{-1}K^{-1}$]

 K_{p} for the reaction at 1000 K is

1) 83.1	2) 2.077×10
3) 0.033	4) 0.021

Ans. 3

Sol. $K_{c} = \frac{k_{f}}{k_{b}} = \frac{1}{2500}$ $K_{p} = K_{c} \times (RT)^{An} = \frac{1}{2500} \times 0.0831 \times 1000$ $(\because \Delta n = 1)$

 $\therefore K_{p} = 0.033$

74. Given below are two statements:

Statement -I: Benezenediazonium salt is prepared by the reaction of aniline with nitrous acid at 273-278 K. It decomposes easily in the dry state.

Statement II: Insertion of iodine into the benzene ring is difficult and hence iodobenzene is prepared through the reaction of benzenediazonium salt with KI.

In the light of the above statements, choose the most appropriate answer from the options given below

1) Both Statement -I and Statement -II are correct

2) Both Statement -I and Statement -II are incorrect

3) Statement -I is correct but Statement -II is incorrect

4) Statement -I is incorrect but Statement -II is correct

- Ans. **1**
- Sol. Conceptual

75. How many products (including stereoisomers) are expected from monochlorination of the following compound?

76. Among the given compounds I-III, the correct order of bond dissociation energy of C-H bond marked with* is:

Sol. $C_{sp} - H > C_{sp^2} - H > C_{sp^3} - H$

Which one of the following compound doesn't 77. decolourize bromine water?

Ans. 1

- Sol. Saturated hydrocarbons do not decolourise bromine water
- The major product of the following reaction is: 78.

79. Which of the following aqueous solution will exhibit highest boiling point? 1) 0.01M Urea 2) 0.01M KNO₃

> 3) 0.01M Na₂SO₄ 4) 0.015m $C_6 H_{12} O_6$

Ans. 3

B.P α solute particle concentration (i \times C) Sol.

Match List-I with List -II 80.

	Lis	st-I	List-II				
	А	Haber process	Ι	Fe catalyst			
	В	Wacker	II	PdCl ₂			
		oxidation					
	С	Wilkinson catalyst	III	$\left[\left(\text{PPh}_3\right)_3\text{RhCl}\right]$			
	D	Ziegler catalyst	IV	TiCl_4 with $\text{Al}(\text{CH}_3)_3$			
	Cho	ose the correct a	answ	ver from the options			
	give	n below:					
	1) A	A - I, B - II, C - IV, D) – III	[
	2) A	A – II, B – III, C – I, D	-IV				
	3) A	A − I, B − II, C − III, D	-IV				
	4) A	A – I, B – IV, C – III, I	D – II	Ι			
Ans.	3						
Sol.	Hab	Haber process - Fe catalyst					
	Wacker oxidation-PdCl ₂						
	Wilk	xinson catalyst-[(PPh_3	$_{3}$ RhCl			
	Zieg	ler catalyst-TiCl ₄	with	$A1(CH_3)_2$			

- 5 moles of liquid X and 10 moles of liquid Y 81. make a solution having a vapour pressure of 70 torr. The vapour pressures of pure X and Y are 63 torr and 78 torr respectively. Which of the following is true regarding the described solution?
 - 1) The solution shows positive deviation
 - 2) The solution shows negative deviation
 - 3) The solution is ideal

0

4) The solution has volume greater than the sum of individual volumes

Sol.

$$P_{\text{total}} = p_x^0 \cdot \chi_x + p_y^0 \cdot \chi_y$$
$$= 63 \times \frac{5}{15} + 78 \times \frac{10}{15} = 73 \text{ torr}$$

 $\therefore P_{\text{total(ideal)}} > P_{\text{given}}$,The solution shows negative deviation

82. Sugar 'X'

A. is found in honey

- B. is a keto sugar
- C. exist in α and β anomeric forms
- D. is laevorotatory.
- 'X' is
- 1) D-Glucose 2) D-Fructose
- 3) Maltose 4) Sucrose

Ans. 2

Sol. Conceptual

83. Identify the suitable reagent for the following conversion

$$CHO$$
1) (i) LiAIH₄, (ii) H⁺ / H₂O
2) (i) AIH(iBu)₂, (ii) H₂O
3) (i) NaBH₄, (ii) H⁺ / H₂O
4) H₂ / Pd - BaSO₄

Ans. 2

- DIBAL H reduces ester to aldehyde Sol.
- 84. Given below are two statements: one is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A):

1 undergoes $S_N 2$

C1.

reaction faster than

Reason (R): Iodine is a better leaving group because of its large size.

In the light of the above statements, choose the correct answer from the options given below

85.

86.

Sol.

NEET - 2025 (CODE - 45)

1) Bothe **A** and **R** are true and **R** is the correct 87. Identify the correct orders against the property explanation of **A** mentioned 2) Both **A** and **R** are true but **R** is not the A. $H_2O > NH_3 > CHCl_3 - dipole$ moment correct explanation of A B. $xeF_4 > XeO_3 > XeF_2$ - number of lone pairs 3) **A** is true but **R** is false on central atom 4) **A** is false btu **R** is true C. O - H > C - H > N - O-bond length Ans. 1 D. $N_2 > O_2 > H_2$ – bond enthalpy R-I contains better leaving group than in R-Cl Sol. Choose the correct answer from the options given below: The standard heat of formation, in kcal/ mol 2) B, D only 1) A, D only of Ba^{2+} is : 3) A, C only 4) B, C only [**Given:** standard heat of formation of SO_4^{2-} ion Ans. 1 (aq) =216 kcal/mol, standard heat of $H_2O > NH_3 > CHCl_3 - dipole moment$ Sol. $BaSO_4 = -4.5kcal / mol$ crystallisation of $N_2 > O_2 > H_2$ – bond enthalpy standard heat of formation $BaSO_4(s) = -349 \text{ kcal / mol} \text{ of}$ Higher yield of NO in 88. 1) - 128.52) -133.0 $N_2(g) + O_2(g) \Longrightarrow 2NO(g)$ can be obtained at 3)+133.04) + 220.2 $\left[\Delta H \text{ of the reaction} = +180.7 \text{ kJ mol}^{-1}\right]$ Ans. **1** $Ba_{(aq)}^{2+} + SO_{4(aq)}^{2-} \rightarrow BaSO_{4(s)}$ $\Delta H = -4.5$ k.cal / mol A. higher temperature Sol. B. lower temperature from $\Delta H = \sum \Delta_f H(\text{products}) - \sum \Delta_f H(\text{Reactants})$ C. higher concentration of N_2 -4.5 = -349 - [x + (-216)]D. higher concentration of O_2 x = -349 + 216 + 4.5 = -128.5k.cal/mol Choose the correct answer from the options $\therefore \Delta_{\rm f} {\rm H}^0 \left({\rm Ba}^{2+} \right) = -128.5 \, {\rm kcal} \, / \, {\rm mol}$ given below: 1) A, D only 2) B, C only 3) B, C, D only 4) A, C, D only Total number of possible isomers (both Ans. 4 structural as well stereoisomers) of cyclic The given reaction is Endothermic and Sol. ethers of molecular formula $C_A H_Q O$ is Higher yield of NO is favoured by 1) 6 2) 8 higher temperature 3) 10 4) 11 higher concentration of N_2 & Ans. 3 higher concentration of O_2 89. If the rate constant of a reaction is $0.03 \, \text{s}^{-1}$, (d and 1 how much time does it take for 7.2 mol L^{-1} concentration of the reactant to get reduced to 0.9 mol L^{-1} ? (Given: log2=0.301) 1) 69.3s 2) 23.1s (d and l)3) 210s 4) 21.0s cis, trans(d and l) Ans. 1 Given reaction is first order reaction Sol. $k = \frac{2.303}{t} \log \frac{[R]_0}{[R]}$ $0.03 = \frac{2.303}{t} \log \frac{7.2}{0.9}$ $t = \frac{0.693}{0.01} = 69.3 sec$

Ans. 4

Sol. Conceptual

90.

Which of the following reactions does NOT

belong to "Lassaigne's test"? 1) Na + C + N \longrightarrow NaCN

4) $2CuO + C \xrightarrow{\Delta} 2Cu + CO_2$

2) $2Na + S \longrightarrow Na_2S$ 3) Na + X $\xrightarrow{\Delta}$ NaX

			BIOL	OGY			
91.	The trans 1) Cy 2) Su 3) Cy 4) NA	comple sport ch tochron accinate tochron ADH deh	x II of ain is al ne of bc dehydro ne c oxid nydrogen	mitoch so known ogenation lase nase	nondrial n as	electro	on
Ans.	2						
92.	Polyr follov 1) N ²	nerase ving the	chain equatio	(PCR) n 2) 2 ⁿ	amplifie	s DN	JA
	3) 2r	n + 1		4) 2N ²			
Ans.	2						
93.	What of the A. Hi B. Ex C. Hu D. Le E. No	are the e IVF mo gh fatal pensive usband ess adop ot availa	e potenti ethod? ity risk t e instrum wife nec otion of c ble in In	al drawh to mothe nents an essary fo orphans udia	packs in a r d reagent or being c	adoptio ts lonors	on
	F. Po	ossible	that the	e early o	embryo d	loes n	ot
	survi Choo	ve se the	correct	answer	from the	option	ns
	given 1) B, 3) A,	below. D, F on B, C, D	ly only	2) A, C 4) A, B	, D only , C, E, F (only	
Ans.	47		-			-	
94.	What carrie	t is the es deox	name vgenated	of the h 1 blood	blood ves from the	sel th body	at to

A 9 the heart in a frog? 1) Aorta 2) Pulmonary artery 3) Pulmonary vein 4) Vena cava Ans. 4 95. Which of the following statements refers to reductionist biology? 1) Physico-chemical approach to study and understand living organisms 2) Physiological approach to study and understand living organisms 3) Chemical approach to understand living organisms 4) Behavioural approach to understand living organisms

and

study

study and

96. Given below are two statements. **Statement-I** : In the RNA world is considered the first genetic material evolved to carry out essential life process. RNA acts as a genetic material and also as a catalyst for some important biochemical reactions in living systems. Being reactive. RNA is unstable. Statement-II : DNA evolved from RNA and is a more stable genetic material. Its double helical stands being complementary resists changes by evolving repairing mechanism. In the light of the above statements choose the most appropriate answer from the options given below. 1) Both Statements are correct 2) Both Statements are incorrect 3) Statement-I is correct, Statement-II is incorrect 4) Statement-I is incorrect, Statement-II is correct Ans. 1 97. Epiphytes that are growing on a mango branch is an example of which of the following? 1) Commensalism 2) Mutalism 3) Predation 4) Amensalism Ans. 1 98. From the statements given below choose the correct option. A) The eukaryotic ribosomes are 80S and prokaryotic ribosomes are 70S B) Each ribosomes has two sub units C) The two sub units of 80S ribosomes are 60S and 40S while that 70S are 50S and 30S D) The two sub units of 80S ribosomes 60S and 20S and that of 70S are 50S and 20S E) The two sub units of 80S and 60S and 30S and that of 70S are 50S and 30S 1) A, B, C are true 2) A, B, D are true 3) A, B, E are true 4) B, D, E are true

Ans. 1

- 99. Which of the following is an example of exsitu conservation?
 - 2) Wildlife Sanctuary 1) National park
 - 3) Zoos and botanical gardens
 - 4) Protected areas

Ans. 3

100. Given below are two statements.

Statement-I : The primary source of energy is an ecosystem is solar energy.

Statement-II : The rate of production of organic matter during photosynthesis in an ecosystem is called net primary productivity (NPP)

In the light of the above statements choose the most appropriate answer from the options given below.

1) Both Statements are correct

2) Both Statements are incorrect

3) Statement-I is correct, Statement-II is incorrect

4) Statement-I is incorrect, Statement-II is correct

Ans. 3

101 Match List I with List II

	List-I		List -II
A)	Emphysema	I)	Rapid spasms in
			muscle due to low
			Ca ⁺⁺ in body fluid
B)	Angina pectoris	II)	Damaged alveolar
			walls and
			decreased
			respiratory
			surface
C)	Glomerulonephritis	III)	Acute chest pain
			when not enough
	11.77		oxygen is reaching
6			to heart muscle
D)	Tetany	IV)	Inflammation of
			glomeruli of
			kidney

Choose the correct answer from the options given below.

- 1) A III; B I; C IV; D II
- 2) A III; B I; C II; D IV
- 3) A II; B IV; C III; D I
- 4) A II; B III; C IV; D I

Ans. 4

102. Given below are two statements. One is labelled as Assertion (A) and other is labelled as Reason (R).

> Assertion (A): Both wind and water pollinated flowers are not very colourful and do not produce nectar.

> Reason (R): The flowers produce enormous amount of pollen grains in wind and water pollinated flowers.

> In the light of the above statements, choose the correct answer from the options given below.

1) Both (A) and (R) are true and (R) is the 108. Which one of the following phytohormones promotes nutrient mobilization which helps in 2) Both (A) and (R) are true and (R) is not the the delay of leaf senescence in plants? 1) Ethylene 2) Abscisic acid 3) Gibberellin 4) Cytokinin Ans. 4 109. While trying to find out the characterstic of a 103. Which of the following is an example of non newly found animal, a researcher did the distilled alcoholic beverage produced by yeast? histology of adult animal and observed a cavity with presence of mesodermal tissue towards

1) Acoelomate

Ans. 2

3) Schizocoelomate

the body wall but no mesodermal tissue was

observed towards the alimentary canal. What

could be the possible coelome of that animal?

2) Pseudocoelomate

4) Spongocoelomate

1) Whisky 2) Brandy 3) Beer 4) Rum

Ans. 3

Ans. 2

104. Given below are two statements.

correct explanation of (A)

correct explanation of (A)

3) A is true but R is false

4) A is false but R is true

Statement-I : In a floral formula \oplus stands for zygomorphic nature of the flower and G stands for inferior ovary.

Statement-II : In a floral formula \oplus stands for actinomorphic nature of the flower and G stands for superior ovary

In the light of the above statements choose the most appropriate answer from the options given below.

1) Both Statements are correct

2) Both Statements are incorrect

3) Statement-I is correct, Statement-II is incorrect

4) Statement-I is incorrect, Statement-II is correct

Ans. 4

105. Streptokinase produced by bacterium streptococcus is used for

- 1) Curd production
- 2) Ethanol production
- 3) Liver disease treatment
- 4) Removing clots from blood vessels

Ans. 4

- 106. Which chromosome in the human genome has the highest number of genes?
 - 1) Chromosome X 2) Chromosome Y
 - 3) Chromosome 1 4) Chromosome 10
- Ans. 3
- 107. Which of the following statements is **correct** about location of the male frog copulatory pad?
 - 1) First and second digit of fore limb
 - 2) First digit of hind limb
 - 3) Second digit of fore limb
 - 4) First digit of the fore limb

Ans. 4

110. Match List I with List II. List-I List -II Head A) I) Enzyme B) Middle piece II) Sperm motility Acrosome III) Energy C) D) Tail IV) Genetic material 1) A - IV; B - III; C - I; D - II2) A - IV; B - III; C - II; D - I3) A - III; B - IV; C - II; D - I4) A - III; B - II; C - I; D - IVAns. 1

111. Given below are the stages in the life cycle of pteridophytes. Arrange the following stages in the correct sequence. A) Prothallus stage B) Meiosis in spore mother cells C) Fertilisation D) Formation of archegonia and antheridia in gametophyte E) Transfer of antherozoids to the archegonia in present of water Choose the correct answer from the options given below. 1) B, A, D, E, C 2) B, A, E, C, D 4) E, D, C, B, A 3) D, E, C, A, B Ans. 1 112. Cardiac activities of the heart are regulated by A) Nodal tissue B) A special neural centre in the medulla

oblongata

C) Adrenal medullary hormones

D) Adrenal cortical hormones

Choose the correct answer from the options given below.

NEET - 2025 (CODE - 45)

	1) A, B and C only 3) A, C and D only	2) A, B, C and D 4) A, B and D only	116.	Which of the following genetically engineered organisms was used by Eli. Lilly to prepare
Ans.	1	,, 2 omy		human insulin?
113.	Which of the followi	ng organisms cannot fix		3) Virus 4) Phage
	nitrogen?		Ans.	1
	A) Azotobacter	B) Oscillatoria		
	C) Anabaena D) Nostac	D) Volvox	117.	Name the class of enzymes that usually catalyse the following reactions.
	Choose the correct	answer from the options		$S - G + S'' \rightarrow S + S'' - G$
	given below.			Where G- a group other than hydrogen
	1) A only 2) D only	2) D only		S- a substrate
Ane	3) B 0111y	4) E only		S"– another substrate
лпэ.	4			1) Hydrolysis 2) Lyase
114.	Given below are two	statements.	Ans	3) Transferase 4) Ligase
	Statement-I : Tran	sfer RNAs and ribosomal	Alls.	3
	RNA do not interact v	with mRNA	118.	Find the statements that is NOT correct with
	Statement-II : RNA	interference (RNA) takes	1101	regard to the structure of monocot stem.
	place in all eukaryoti	c organisms as a method		1) hypodermis is parenchymatous
	of cellular defence.			2) Vascular bundles are scattered
	In the light of the abo	ove statements choose the		3) Vascular bundles are conjoint and closed
	given below	iswei itoin the options	-	4) Phloem parenchyma is absent
	1) Both Statements a	re correct	Ans.	1
	2) Both Statements a	re incorrect	110	The correct acqueres of events in the life evels
	3) Statement-I is	correct, Statement-II is	119.	of Bryonhytes is
	incorrect			A) Fusion of antherozoid with egg
	4) Statement-I is if	icorrect, Statement-II is		B) Attachment of gametophyte to substratum
Ans	4			C) Reduction division to produce haploid
Ang.	-		IG	spores
115.				D) Formation of sporophyte
	BamH1 Tet R			E) Release of antherozoids into water
				choose the correct answer from the options
	Ori			$1) \mathbf{D} \mathbf{E} \mathbf{A} \mathbf{C} \mathbf{B} \qquad 2) \mathbf{B} \mathbf{E} \mathbf{A} \mathbf{C} \mathbf{D}$
	In the second se	EcoRI		3) B, E, A, D, C 4) D, E, A, B, C
		β Galactosidase	Ans.	3
	amp	control alcomid on align		
	ni the above repres	s inserted at EcoPI site	120.	Which are correct.
	Which of the following	g strategies will be chosen		A) Computed tomography and magnetic
	to select the recombi	nant colonies?		resonance imaging detect cancers of internal
	1) using ampicillin	& tetracyclin containing		B) Chemotherpeutics drugs are used to kill
	medium plate			non cancerous cells.
	2) Blue color colonies	s will be selected		C) α – interferon activate the cancer patients
	3) White color colonie	es grown on ampicillin		immune system and helps in destroying the
	4) Blue color colon	ies grown on ampicillin		D) Chemotherapeutic drugs are biological
•	plates can be selected	d		response modifiers
Ans.	3			E) In the case of leukaemia blood cell counts
				Choose the correct answer from the options
				given below.
				1) B and D only 2) D and E only
				3) C and D only 4) A and C only
			Ans.	4

121. Match the Column I with Column II.

Column-I	Column-II		
A. Centromere	I. Mitochondria		
B. Cilium	II. Cell division		
C. Cristae	III. Cell movement		
D. Cell membrane	IV. Phospolipid Bilaver		

Choose the correct answer from the options given below:

1) A-I, B-II, C-III, D-IV 2) A-II, B-I, C-IV, D-III 3) A-IV, B-II, C-III, D-I 4) A-II, B-III, C-I, D-IV

Ans. 4

122. Match the Column I with Column II.

Column-I	Column-II			
A. Chlorophyll a	I. Yellow-green			
B. Chlorophyll b	II. Yellow			
C. Xanthophylls	III. Blue-green			
D. Carotonoida	IV. Yellow to Yellow-			
D. Carotellolus	orange			
1) A-III, B-IV, C-II, D-I 2) A-III, B-I, C-II, D				

3) A-I, B-II, C-IV, D-III 4) A-I, B-IV, C-III, D-IV

Ans. 2

123. Find the correct statements

A. In human pregnancy, the major organ systems are formed at the end of 12 weeksB. In human pregnancy the major organ

systems are formed at the end of 8 weeks.

C. In human pregnancy heart is formed after one month of gestation

D. In human pregnancy, limbs and digits develop by the end of second month

E. In human pregnancy the appearance of hair is usually observed in the fifth month.

Choose the correct answer from the option given below.

- 1) A and E only 2) B and C only
- 3) B, C, D and E only 4) A, C, D and only
- Ans. 4
- 124. In the seeds of cereals, the outer covering of endosperm separates the embryo by a proteinrich layer called
 - 1) Coleoptile 2) Coleorhiza
 - 3) Integument 4) Aleurone layer

125. Which of the following diagrams is correct with regard to the proximal (P) and distal (D) tubule of the Nephron.

Ans. 2

126. Identify the part of a bio-reactor which is used as a foam braker from the given figure

Ans. 4

127. Given below are two statements: One is labelled as Assertion(A) and the other is labelled as Reason(R).

Assertion (A) : A typical unfertilised, angiosperm embryo sac at maturity is 8 nuclete and 7-celled.

Reason(R) : The egg apparatus has 2 polar nuclei.

In the light of the above statements, choose the correct answer from the options given below:

	HT	(CODE – 45) 24				24	
	 Both (A) and (R) are true and correct explanation of (A) Both (A) and (R) are true and correct explanation of (A) (A) is true but (R) is false (A) is false but (R) is true 	d (R) is the d (R) is not the	132.	Each of the a Kingdom following in body organ A. Multice made of ch	e following proposed 1 n increasin nization. llular heto itin	characteristics represen by Whittaker. Arrange th ng order of complexity o erotrophs with cell wa	nt ne of all
Ans.	3			B. Hetero	otrophs w	rith tissue/organ/orga	n
128. Ans.	 A specialised membranous prokaryotic cell which help formation, DNA replication an 1) Mesosome 2) Chromatophores 3) Cristae 4) Endoplasmic reticulum 1 	structure in a os in cell wall d respiration is		C. Prokat polysaccha D. Eukary level of boo E. Eukaryo Choose the given below 1) A, C, E,	yotes with arides and otic autot: ly organiza- otes with co- e correct a v. B, D D, B	2) C, E, A, D, B	of In n 1s
129.	Which of the following transcriptional events in an en A. Transport of pre-mRNA to to splicing	are the post akaryotic cell? cytoplasm prior	Ans. 133.	2 Who is kr	nown as t	he father of Ecology i	in
	 B. Removal of introns and joir C. Addition of methyl group at D. Addition of adenine residu 	ing of exons 5' end of hnRNA les at 3' end of	Ans.	1) S.R. Kas 3) Ram Ud 2	shyap ar	2) Ramdeo Misra 4) Birdal Sahni	
	F. Base pairing of two comple	mentary RNAs	134.	Match the	List-I with	List-II.	
	Choose the correct answer fi	com the options	Lis	st-I		List-II	7
	given below 1) A, B, C only 2) B, C,	D only	А.	Alfred Hersh Martha (ney and Chase	I. Streptococcus pneumoniae	
Ans.	3) B, C, E only 4) C, D, 2	E only	B.	Euchromati	n	II. Densely packed and dark- stained	
130.	What is the pattern of inheritat trait? 1) Mendelian inheritance patte	nce for polygenic ern	C.	Frederick G	riffith	III. Loosely packed and light- stained	1
	2) Non-mendelian inheritance3) Autosomal dominant patter	pattern n	D.	Heterochron	natic	IV. DNA as genetic material	1

3) Autosomal dominant pattern

4) X-linked recessive inheritance pattern

Ans. 2

- 131. Which one of the following enzymes contains 'Haem' as the prosthetic group?
 - 1) RuBisCo 2) Carbonic anhydrase
 - 3) Succinate dehydrogenase
 - 4) Catalase

Ans. 4

Choose the correct answer from the options given below:

confirmation

1) A-II, B-IV, C-I, D-III 2) A-IV, B-II, C-I, D-III 3) A-IV, B-III, C-I, D-II 4) A-III, B-II, C-IV, D-I

Ans. 3

Ans. 2

135. Neoplastic characteristics of cells refer to A. A mass of proliferating cell B. Rapid growth of cells C. Invasion and damage to the surrounding tissue D. Those confined to original location Choose the correct answer from the options given below 1) A, B only 2) A, B, C only 3) A, B, D only 4) B, C, D only

136. Given below are two statements

Statement-I: The DNA fragments extracted from gel electrophoresis can be used in construction of recombinant DNA **Statement-II**: Smaller size DNA fragments are observed near anode while larger fragments are found near the wells in an agarose gel.

In the light of the above statements, choose the correct answer from the options given below:

- 1) Both S I and S II are correct
- 2) Both S I and S II are incorrect
- 3) S I is correct but S II is incorrect
- 4) S I is incorrect but S II is correct

Ans. 1

137. Match the List-I with List-II.

List-I	List-II		
A. Adenosine	I. Nitrogen base		
B. Adenylic acid	II. Nucleotide		
C. Adenine	III. Nucleoside		
D. Alanine	IV. Amino acid		

Choose the option with all correct matches

1) A-III, B-IV, C-II, D-I 2) A-III, B-II, C-IV, D-I 3) A-III, B-II, C-I, D-IV 4) A-II, B-III, C-I, D-IV

Ans. 3

138. Consider the following.

A. The reductive division for the human female gametogenesis starts earlier than that of the male gametogenesis

B. The gap between the first meiotic division and the second meiotic division is much shorter for males compared to females

C. The first polar body is associated with the formation of the primary oocyte

D. Luteinizing Hormone (LH) surge leads to disintegration of the endometrium and onset of menstrual bleeding.

Choose the correct answer from the options given below

- 1) A and B are true 2) A and C are true
- 3) B and D are true 4) B and C are true

Ans. 1

139. All living members of the class Cyclostomata are:

1) Free living	2) Endoparasite
3) Symbiotic	4) Ectoparasite

Ans. 4

140. Given below are two statements: One is labelled as Assertion(A) and the other is labelled as Reason(R).

Assertion (A) : The primary function of the Golgi appratus is to package the materials made by the endoplasmic reticulum and deliver it to intracellular targets and outside the cell.

Reason(R): Vesicles containing materials made by the endoplasmic reticulum fuse with the cis face of the Golgi apparatus, and they are modified and released from the trans face of the Golgi apparatus

In the light of the above statements, choose the correct answer from the options given below:

1) Both (A) and (R) are true and (R) is the correct explanation of (A)

2) Both (A) and (R) are true and (R) is not the correct explanation of (A) $% \left(A\right) =0$

3) (A) is true but (R) is false

4) (A) is false but (R) is true

Ans. 1

141. Match the List-I with List-II.

List-I	List-II			
A. Scutellum	I. Persistent nucellus			
B Non albuminous	II. Cotyledon of			
B. Non-arbummous	Monocot seed			
C. Epiblast	III. Groundnut			
D. Parianarm	IV. Rudimentary			
D. Felispelill	cotyledon			

Choose the option with all correct matches 1) A-II, B-III, C-IV, D-I 2) A-IV, B-III, C-II, D-I 3) A-IV, B-III, C-I, D-II 4) A-II, B-IV, C-III, D-I

Ans. 1

142. Given below are two statements: One is labelled as Assertion(A) and the other is labelled as Reason(R).

Assertion (A) : All vertebrates are chordates but all chrodates are not vertebrate.

Reason(R) : The members of subphylum vertebrata possess notochord during the embryonic period, the notochord is replaced by a cartilaginous or bony vertebral column in adults.

In the light of the above statements, choose the correct answer from the options given below:

Both (A) and (R) are true and (R) is the correct explanation of (A)
 Both (A) and (R) are true and (R) is not the correct explanation of (A)

- 3) (A) is true but (R) is false
- 4) (A) is false but (R) is true
- Ans. 1

143. Identify the statement that is NOT correct.1) Each antibody has two light and two heavy chains

2) The heavy and light chains are held together by disulfide bonds

3) Antigen binding site is located at C-terminal region of antibody molecules

4) Constant region of heavy and light chains are located at C-terminus of antibody molecules

Ans. 3

- 144. Silencing of specific mRNA is possible via RNAi because of
 - 1) Complementary dsRNA
 - 2) Inhibitory ssRNA
 - 3) Complementary tRNA
 - 4) Non-complementary ssRNA

Ans. 1

- 145. Genes R and Y follow independent assortment. If RRYY produce round yellow seeds and rryy produce wrinkled green seeds, what will be the phenotypic ratio of the F2 generation?
 - 1) Phenotypic ratio 1:2:1
 - 2) Phenotypic ratio 3:1
 - 3) Phenotypic ratio 9:3:3:1
 - 4) Phenotypic ratio 9:7

Ans. 3

- 146. Histones are enriched with
 - 1) Lysine & Arginine
 - 2) Leucine & Lysine
 - 3) Phenylalanine & Leucine
 - 4) Phenylalanine & Arginine

Ans. 1

- 147. The first menstruation is called:
 - 1) Menopause 2) Menarche
 - 3) Diapause 4) Ovulation
- Ans. 2

148. Match the List-I with List-II.

List-I	List-II
A. Heart	I. Erythropoietin
B. Kidney	II. Aldosterone
C. Gastro-intestinal	III. Atrial natriuretic
tract	factor
D. Adrenal Cortex	IV. Secretin

Choose the correct answer from the options given below:

1) A-II, B-I, C-III, D-IV 2) A-IV, B-III, C-II, D-I 3) A-I, B-III, C-IV, D-II 4) A-III, B-I, C-IV, D-II **4**

- 149. The protein portion of an enzyme is called:
 - 1) Cofactor 2) Coenzyme
 - 3) Apoenzyme 4) Prosthetic group

Ans. 3

- 150. Which of the following is the unit of productivity of an Ecosystem?
 - 1) gm^{-2} 2) $KCal m^{-2}$
 - 3) KCal m^{-3} 4) $(\text{KCal m}^{-2})\text{yr}^{-1}$

Ans. 4

- 151. Sweet potato and potato represent a certain type of evolution. Select the correct combination of terms to explain the evolution.
 - 1) Analogy, convergent
 - 2) Homology, Divergent
 - 3) Homology, convergent
 - 4) Analogy, divergent

Ans. 1

152. With the help of given pedigree, find out the probability for the birth of a child having no disease and being a carrier (has the disease mutation in one allele of the gene) in F_3 generation

153. Given below arc two statements: One is labelled as Assertion (A) and the other is labelled as Reason (R)

Assertion (A): Cells Of the tapetum possess dense cytoplasm and generally have more than one nucleus.

Reason (R): Presence of more than one nucleus in the tapetum increases the efficiency of nourishing the developing microspore mother cells.

Ans. 4

161. Why can't insulin be given orally to diabetic patients?

1) Human body will elicit strong immune response

2) It will be digested in Gastro-Intestinal (GI) tract

- 3) Because of structural variation
- 4) Its bioavailability will be increased

Ans. 2

162. Match List-I with List-II

List-I		List-II				
А	Pteridophyte	Ι	Salvia			
В	Bryophyte	II	Ginkgo			
С	Angiosperms	III Polytrichum				
D	D Gymnosperms IV Salvinia					
Choose the option with all correct matches						

1) A-III, B-IV, C-II, D-I 2) A-IV, B-III, C-I, D-II

3) A-III, B-IV, C-I, D-II 4) A-IV, B-III, C-II, D-I

Ans. 2

- 163. Who proposed that the genetic code for amino acids should be made up of three nucleotides? 1) George Gamow 2) Francis Crick
 - 3) Jacque Monod

Ans. 1

4) Franklin Stahl

164. Match List-I with List-II

List-I			List-II			
А	The	Evil	Ι	Cryopre	eservation	
	Quartet					
В	Ex	situ	II	Alien	species	
	conservati	on		invasion		
С	Lantana		III	Causes	of	
	camara			biodiver	rsity	
				losses		
D	Dodo		IV	Extinct	ion	

Choose the option with all **correct** matches 1) A-III, B-II, C-I, D-IV 2) A-III, B-I, C-II, D-IV 3) A-III, B-IV, C-II, D-I 4) A-III, B-II, C-IV, D-I

Ans. 2

- 165. Which of the following hormones released from the pituitary is actually synthesized in the hypothalamus?
 - 1) Luteinizing hormone (LH)
 - 2) Anti-diuretic hormone (ADH)
 - 3) Follicle-stimulating hormone (FSH)
 - 4) Adenocorticotrophic hormone (ACTH)

Ans. 2

166. Role of the water vascular system in Echinoderms is A) Respiration and Locomotion B) Excretion and Locomotion C) Capture and Transport of food D) Digestion and Respiration E) Digestion and Excretion Choose the **correct** answer from the options given below 1) A and B only 2) A and C only 3) B and C only 4) B, D and E only

Ans. 2

- 167. Which of the following type of immunity is present at the time of birth and is a nonspecific type of defence in the human body?
 - 1) Acquired Immunity
 - 2) Innate Immunity
 - 3) Cell-mediated Immunity
 - 4) Humoral Immunity

Ans. 2

- 168. In bryophytes, the gemmae help in which one of the following?
 - 1) Sexual reproduction
 - 2) Asexual reproduction
 - 3) Nutrient absorption
 - 4) Gaseous exchange

Ans. 2

- 169. In frog, the Renal portal system is a special venous connection that acts to link:
 - 1) Liver and intestine 2) Liver and kidney
 - 3) Kidney and intestine
 - 4) Kidney and lower part of body

Ans. 4

170. Given below are two statements:

Statement-I : In ecosystem, there is unidirectional flow of energy of sun from producers to consumers

Statement-II : Ecosystems are exempted from 2nd law of thermodynamics

In the light of the above statements, choose the correct answer from the options given below:

- 1) Both S I and S II are correct
- 2) Both S I and S II are incorrect
- 3) S I is correct but S II is incorrect
- 4) S I is incorrect but S II is correct

Ans. 3

171. Ans. 172.	 Which of the following statements about RuBisCO is true? 1) It is active only in the dark 2) It has higher affinity for oxygen than carbon dioxide 3) It is an enzyme involved in the photolysis of water 4) It catalyzes the carboxylation of RuBP. 4 Which of the following enzyme(s) are NOT 		175.	Frogs respire in water by skin and buccal cavity and on land by skin, buccal cavity and lungs Choose the correct answer from the following. 1) The statement is true for water but false for land 2) The statement is true for both the environment 3) The statement is false for water but true for land 4) The statement is false for both the		
	essential for gene cloning? A. Restriction enzymes B. DNA ligase C. DNA mutase			environment		
			Ans.	Ans. 3		
			176	Twins are born to a fa	mily that lives next door	
	D. DNA recombinase		170.	to you. The twins are a boy and girl. Which of		
	E. DNA polymerase Choose the correct answer from the options			the following must be true?		
				1) They are monozygotic twins		
	given below:			2) They are fraternal twins		
	1) C and D only 3) D and F only	2) A and B only 4) B and C only		3) They were conc	eived through in vitro	
Ans.	1	+) D and C only	4) They have 75% identical genetic of		ntical genetic content	
			Ans.	2	5	
173.	Read the following sta	atements on plant growth				
	and development. A. Parthenocarpy can be induced by auxins		177.	177. Which of the following microbes is NOT involved in the preparation of household		
	promotion as well as	n as well as inhibition of growth		A. Aspergillus nigger		
	C. Dedifferentiation is a pre-requisite for re-			B. Lactobacillus		
	differentiation			C. Trichoderma polysporum		
	 D. Abscisic acid is a plant growth promoter. E. Apical dominance promotes the growth of lateral buds. Choose the option with all correct state 		IG	D. Saccharomyces cerevisiae		
			Choose the correct answer from the options			
				given below		
	1) A, B, C only	2) A, C, E only		1) A and B only	2) A and C only	
	3) A, D, E only	4) B, D, E only		3) C and D only	4) C and E only	
Ans.	1		Ans.	2		
174	Which factor is important for termination of		178	Match the List-I with	List-II	
171.	transcription?		170.	List-I	List-II	
	1) α (alpha)	2) σ (sigma)		A. Progesterone	I. Pars intermedia	
	3) ρ (rho)	4) γ (gamma)		B. Relaxin	II. Ovary	
Ans.	3			C. Melanocyte	III Adrenal	
				stimulating	Medulla	
				hormone	W. Compute	
				D. Catecholamines		
				Choose the correct a	answer from the options	
				given below:		
				1) A-IV, B-II, C-I, D-III 2) A-IV, B-II, C-III, D-I		
				3) A-II, B-IV, C-I, D-III 4) A-III, B-II, C-IV, D-I		
			Ans.	1		
			1			

179. The blue and white selectable markers have been developed which differentiate recombinant colonies from non-recombinant colonies on the basis of their ability to produce colour in the presence of a chromogenic substrate.

Given below ore two statements about this method:

Statement-I: The blue coloured colonies have DNA insert in the plasmid and they are identified as recombinant colonies

Statement-II: The colonies without blue colour have DNA insert in the plasmid and are identified as recombinant colonies.

In the light of the above statements, choose the **most appropriate** answer from the options given below:

1) Both statement-I and statement-II are correct

2) Both statement-I and statement-II are incorrect

3) Statement-I is correct but statement-II is incorrect

4) Statement-I is incorrect but statement-II is correct

Ans. 4

180. Which one of the following equations represents the Verhulst-Pearl Logistic Growth of population?

1)
$$\frac{dN}{dt} = r\left(\frac{K-N}{K}\right)$$
 2) $\frac{dN}{dt} = rN\left(\frac{K-N}{K}\right)$
3) $\frac{dN}{dt} = rN\left(\frac{N-K}{N}\right)$ 4) $\frac{dN}{dt} = N\left(\frac{r-K}{K}\right)$

Ans. 2

INDIVIDUAL ATTENTION, CARING AND MOTIVATION. WEEKLY, CUMMULATIVE AND GRAND TESTS IN THE NEET & JEE PATTERN

II PU SCIENCE ANNUAL EXAM - 2025 TOPPERS

