\#42, 100FT ROAD,
KAMMAGONDANAHALLI, JALAHALLI WEST, BENGALURU - 560015

HOSKOTE - MALUR ROAD, ISRI CROSS, KATTIGENAHALLI, JADIGENAHALLI HOBLI, BENGALURU - 562114

PLOT NO.87, VAHINI NIVAS MATRUSRI NAGAR COLONY, HAFEEZ PET, MIYAPUR, HYDERABAD - 500049

KCBT EXAMINATION - 2023
 SUBJECT : CHEMISTRY (VERSION - A4)

TIME : 02:30 PM TO 03:50 PM

1. For the formation of which compound in Ellingham diagram $\Delta \mathrm{G}^{0}$ becomes more and more negative with increase in temperature?
(A) ZnO
(B) $\mathrm{Cu}_{2} \mathrm{O}$
(C) CO
(D) FeO

Ans. C
Sol.
2. Which of the following compound does not give dinitrogen on heating?
(A) $\mathrm{NH}_{4} \mathrm{NO}_{3}$
(B) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(C) $\mathrm{Ba}\left(\mathrm{N}_{3}\right)_{2}$
(D) $\mathrm{NH}_{4} \mathrm{NO}_{2}$

Ans. A
Sol.
3. Aqueous solution of raw sugar when passed over beds of animal charcoal, it becomes colourless. Pick the correct set of terminologies that can be used for the above example.

	Adsorbent	Adsorbate	Process
(A)	Animal Charcoal	Colouring Substance	Adsorption
(B)	Colouring Substance	Animal Charcoal	Adsorption
(C)	Solution of Sugar	Animal Charcoal	Sorption
(D)	Animal Charcoal	Solution of Sugar	Absorption

Ans. A
Sol.
4. For Freundlich adsorption isotherm, a graph of $\log \left(\frac{x}{m}\right)$ Vs. log (P) gives a straight line. The slope of line and its Y-axis intercept respectively are
(A) $\log \left(\frac{1}{\mathrm{n}}\right), \log \mathrm{K}$
(B) $\frac{1}{\mathrm{n}}, \mathrm{K}$
(C) $\log \left(\frac{1}{\mathrm{n}}\right), \mathrm{K}$
(D) $\frac{1}{n}, \log K$

Ans. D
Sol. $\log \frac{x}{m}=\log K+\frac{1}{n} \log P$
5. When FeCl_{3} is added to excess of hot water gives a sol ' X '. When FeCl_{3} is added to $\mathrm{NaOH}_{\text {(aq) }}$ solution, gives sol ' Y '.
X and Y formed in the above process respectively are
(A) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{Cl}^{-}$and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{OH}^{-}$
(B) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{Fe}^{3+}$ and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{OH}^{-}$
(C) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{OH}^{-}$and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{Fe}^{3+}$
(D) $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{H}^{+}$and $\mathrm{Fe}_{2} \mathrm{O}_{3} \cdot \mathrm{xH}_{2} \mathrm{O} / \mathrm{Na}^{+}$

Ans. B
Sol.
6. The reducing agent in the given equations:
$4 \mathrm{Ag}_{(\mathrm{s})}+8 \mathrm{CN}_{(\mathrm{aq})}^{-}+2 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{aq)}}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 4\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{(\mathrm{aq)}}^{-}+4 \mathrm{OH}_{(\mathrm{aq})}^{-}$
$2\left[\mathrm{Ag}(\mathrm{CN})_{2}\right]_{(\mathrm{qq})}^{-}+\mathrm{Zn}_{(\mathrm{s})} \rightarrow\left[\mathrm{Zn}(\mathrm{CN})_{4}\right]_{(\mathrm{qq})}^{-}+2 \mathrm{Ag}_{(\mathrm{s})}$
(A) $\mathrm{H}_{2} \mathrm{O}$
(B) CN^{-}
(C) Zn
(D) O_{2}

Ans. C
Sol.
7. Which of the following is CORRECT with respect to melting point of a transition element?
(A) $\mathrm{Mn}>\mathrm{Fe}$
(B) $\mathrm{Ti}>\mathrm{V}$
(C) $\mathrm{V}>\mathrm{Cr}$
(D) $\mathrm{Cr}>\mathrm{Mn}$

Ans. D
Sol.
8. $\mathrm{aMnO}_{4}^{-}+\mathrm{bS}_{2} \mathrm{O}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{xMnO}_{2}+\mathrm{ySO}_{4}^{-2}+\mathrm{zOH}^{-}$ a and y respectively are
(A) $3 ; 6$
(B) $8 ; 8$
(C) $8 ; 3$
(D) $8 ; 6$

Ans. D
Sol.
$8 \mathrm{MnO}_{4}^{-}+3 \mathrm{~S}_{2} \mathrm{O}_{3}^{-2}+\mathrm{H}_{2} \mathrm{O} \rightarrow 8 \mathrm{MnO}_{2}+6 \mathrm{SO}_{4}^{-2}+2 \mathrm{OH}^{-}$
9. Which formula and name combination is INCORRECT?
(A) $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right] \mathrm{Cl}$ -

Dichloridodiethylenediammine cobalt (II) chloride
(B) $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{4}\left(\mathrm{H}_{2} \mathrm{O}\right) \mathrm{Cl}\right] \mathrm{Cl}_{2}-$

Tetraammineaquachloridocobalt (III) chloride
(C) $\mathrm{K}_{3}\left[\mathrm{Al}\left(\mathrm{C}_{2} \mathrm{O}_{4}\right)_{3}\right]$ - Potassium
trioxalatoaluminate (III)
(D) $\left[\mathrm{Pt}\left(\mathrm{NH}_{3}\right)_{2} \mathrm{Cl}\left(\mathrm{NO}_{2}\right)\right]$ -

Diamminechloridonitrito - N - platinum (II)
Ans. A
Sol.
10. Which of the following system is an octahedral complex has maximum unpaired electrons?
(A) d^{4} (low spin)
(B) d^{7} (high spin)
(C) d^{9} (high spin)
(D) d^{6} (low spin)

Ans. B
Sol.

$\mathrm{t}_{2 \mathrm{~g}}^{5}$	eg ${ }^{2}$
17/1r 1	11

11. The correct decreasing order of basicity of hydrides of Group-15 elements is
(A) $\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}>\mathrm{PH}_{3}$
(B) $\mathrm{NH}_{3}>\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}$
(C) $\mathrm{SbH}_{3}>\mathrm{AsH}_{3}>\mathrm{PH}_{3}>\mathrm{NH}_{3}$
(D) $\mathrm{PH}_{3}>\mathrm{AsH}_{3}>\mathrm{SbH}_{3}>\mathrm{NH}_{3}$

Ans. B
Sol.
12. Which one of the following oxoacids of phosphorus can reduce AgNO_{3} to metallic silver?
(A) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{6}$
(B) $\mathrm{H}_{3} \mathrm{PO}_{4}$
(C) $\mathrm{H}_{3} \mathrm{PO}_{2}$
(D) $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$

Ans. C
Sol.
13. In solid state, PCl_{5} is a/an
(A) Ionic solid with $\left[\mathrm{PCl}_{4}\right]^{+}$and $\left[\mathrm{PCl}_{6}\right]^{-}$
(B) Covalent solid present in the form of $\mathrm{P}_{2} \mathrm{Cl}_{10}$
(C) Octahedral structure
(D) Ionic solid with $\left[\mathrm{PCl}_{6}\right]^{+}$and $\left[\mathrm{PCl}_{4}\right]^{-}$

Ans. A

Sol.
14. In which one of the following pairs, both the elements does not have ($\mathrm{n}-1$) $\mathrm{d}^{10} \mathrm{~ns}^{2}$ configuration in its elementary state?
(A) Hg, Cn
(B) Cu, Zn
(C) Zn, Cd
(D) Cd, Hg

Ans. B
Sol. $\mathrm{Cu} \rightarrow 4 \mathrm{~s}^{1} 3 \mathrm{~d}^{10}$
$\mathrm{Zn} \rightarrow 4 \mathrm{~s}^{2} 3 \mathrm{~d}^{10}$
15.
$\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{OH} \xrightarrow{\mathrm{PCC}} \mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CHO}$
Hybridisation change involved at $\mathrm{C}-1$ in the above reaction.
(A) sp^{2} to sp^{3}
(B) sp to sp^{2}
(C) sp^{3} to sp
(D) sp^{3} to sp^{2}

Ans. D
Sol.
16. If a didenate ligand ethane - 1,2 -diamine is progressively added in the molar ratio en : Ni :: $1: 1,2: 1, \quad 3: 1$ to $\quad\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}_{6}\right)\right]^{2+}$ aq solution, following co-ordination entities are formed.
I. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{en}\right]_{(\mathrm{qq})}^{2+}$-pale blue
II. $\left[\mathrm{Ni}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}(\mathrm{en})_{2}\right]_{(\mathrm{aq})}^{2+}$ - blue/purple
III. $\left[\mathrm{Ni}(\mathrm{en})_{3}\right]_{(\mathrm{qq})}^{2+}-$ violet

The wavelength in nm of light absorbed in case of I and III are respectively.
(A) 310 nm and 500 nm
(B) 600 nm and 535 nm
(C) 475 nm and 310 nm
(D) 300 nm and 475 nm

Ans. D
Sol.
17. Which of the following is an organometallic compound?
(A) $\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2} \mathrm{Ca}$
(B) $\mathrm{CH}_{3} \mathrm{ONa}$
(C) $\mathrm{CH}_{3} \mathrm{COONa}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{MgBr}$

Ans. D
Sol.
18. A pair of compounds having the same boiling points are
(A) benzene and naphthalene
(B) (+) butan-2-ol and (-) butan-2-ol
(C) cis but-2-ene and trans but-2-ene
(D) n-hexane and neo-hexane

Ans. B
Sol. d and l isomers (enantiomers) have same physical properties
19. Identify A, B and C in the sequence :

(A) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$
(B) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(C) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CN}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{OH}$
(D) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{NC}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$

Ans. C
Sol.

Note: option is given without rearrangement
20. Compounds P and R in the following reaction are

(A) Metamers
(B) Identical
(C) Position isomers
(D) Functional isomers

Ans. C
Sol.

P and R are positional isomers
21. Aniline does not undergo
(A) Friedel-Craft reaction
(B) Bromination
(C) Nitration
(D) Sulphonation

Ans. A
Sol. Conceptual
22. The heating of phenyl methyl ether with HI produces an aromatic compound A which on treatment with con. HNO_{3} gives B . A and B respectively are,
(A) Iodobenzene, 1-Iodo-4-nitrobenzene
(B) Phenol, Picric acid
(C) Methanol, Ethanoic acid
(D) Picric acid, Phenol

Ans. B
Sol.

23.

Y (Major product)
Y in the above reaction is
(A) Cumene
(B) Picric acid
(C) Salicylaldehyde
(D) Aspirin

Ans. D
Sol.

24. A better reagent to oxidize primary alcohols into aldehyde is:
(A) Acidified $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(B) CrO_{3}
(C) PCC
(D) Alkaline KMnO_{4}

Ans. C
Sol. PCC (Due to mild oxidising nature)
25. In the reaction:

Formation of X , formation of Y and Z are known by
(A) Wolff-Kishner reduction, Wurtz reaction.
(B) Stephen reaction, Cannizaro reaction.
(C) Rosenmund reduction, Cannizaro reaction.
(D) Clemmensen reduction, Sandmeyer reaction.

Ans. B

Sol.

$\underset{\text { Y(oxidation) }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COO} \stackrel{\ominus}{\mathrm{N}} \stackrel{\oplus}{\mathrm{a}}}+\underset{\text { Z(reduction) }}{\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{2} \mathrm{OH}}$
26. In the reaction:

P, Q and R respectively are:
(A) $\mathrm{NaNO}_{2}+$ dil. $\mathrm{HCl}, \mathrm{BF}_{3}, \mathrm{Cu}+\mathrm{NaNO}_{2}$
(B) $\mathrm{NaNO}_{3}+$ dil. $\mathrm{HCl}, \mathrm{F}_{2}, \mathrm{Cu}+\mathrm{NaNO}_{3}$
(C) $\mathrm{NaNO}_{2}+$ dil. $\mathrm{HCl}, \mathrm{HBF}_{4}, \mathrm{Cu}+\mathrm{NaNO}_{2}$
(D) $\mathrm{NaNO}_{2}+$ con. $\mathrm{HCl}, \mathrm{F}_{2}, \mathrm{Cu}+\mathrm{NaNO}_{3}$

Ans. C

Sol.

27. Thyroxine produced in the thyroid gland is an iodinated derivative of \qquad
(A) tyrosine
(B) tryptophan
(C) threonine
(D) lysine

Ans. A

Sol. Conceptual
28. Sucrose is dextrorotatory but after hydrolysis the mixture show laevorotation, this is because of
(A) Recemic mixture is formed.
(B) Laevorotation of fructose is more than dextrorotation of glucose.
(C) Laevorotation of glucose is more than dextrorotation of fructose.
(D) Sucrose is a non-reducing sugar.

Ans. B
Sol. Conceptual
29. The correct order of match between column X and column Y is:

\mathbf{X}	\mathbf{Y}
I. Vitamin A	i. Muscular weakness
II. Vitamin D	ii. Increased blood clotting time
III. Vitamin E	iii. Night blindness
IV. Vitamin K	iv. Osteomalacia

(A) I - iii, II - ii, III - iv, IV - i
(B) I - iii, II - iv, III - i, IV - ii
(C) I - iv, II - iii, III - ii, IV - i
(D) I - ii, II - i, III - iii, IV - iv

Ans. B
Sol. Vitamin A - Night blindness
Vitamin D - Osteomalacia
Vitamin E - Muscular weakness
Vitamin K - Blood clotting time
30. Which of the following monomers form biodegradable polymers?
(A) Phenol and formaldehyde
(B) 3-hydroxybutanoic acid and

3-hydroxypentanoic acid
(C) Ethylene glycol and pthalic acid
(D) Caprolactum and 1,3-Butadiene

Ans. B

Sol. PHBV
31. Match the List-I with List-II in the following:

	List-I		List-II
1.	Caprolactum	a)	
2.	Vinyl chloride	b)	
3.	Styrene	c)	
4.	Propene	d)	

(A) 1-d, 2-c, 3-a, 4-b
(B) 1-d, 2-c, 3-b, 4-a
(C) 1-c, 2-d, 3-a, 4-b
(D) 1-a, 2-d, 3-c, 4-b

Ans. B
Sol. Conceptual
32. Which one of the following is a non-narcotic analgesic?
(A) Aspirin
(B) Morphine
(C) Heroin
(D) Codeine

Ans. A
Sol. Conceptual
33. Receptors are proteins and crucial to body communication process. These receptors are embedded in
(A) Endocrine gland
(B) Chromosomes
(C) Cell membrane
(D) Protein

Ans. C
Sol. Conceptual
34. A gas at a pressure of 2 atm is heated from $25^{\circ} \mathrm{C}$ to $323^{\circ} \mathrm{C}$ and simultaneously compressed to $\frac{2^{\text {rd }}}{3}$ of its original value. Then the final pressure is
(A) 2 atm
(B) 4 atm
(C) 1.33 atm
(D) 6 atm

Ans. D

Sol. $\frac{\mathrm{P}_{1} \mathrm{~V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{P}_{2} \mathrm{~V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{P}_{2}=\frac{2 \times 1}{298} \times \frac{3 \times 596}{2}$
$=6 \mathrm{~atm}$
35. Lattice enthalpy for NaCl is $+788 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{H}_{\mathrm{Hyd}}^{\circ}=-784 \mathrm{~kJ} \mathrm{~mol}^{-1}$. Enthalpy of solution of NaCl is
(A) $-572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $-4 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $+572 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $+4 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. D
Sol. $\Delta \mathrm{H}_{\text {sol }}=\Delta \mathrm{H}_{\mathrm{L}}+\Delta \mathrm{H}_{\mathrm{hyd}}$
$=788+(-784)$
$=4 \mathrm{kJmol}^{-1}$
36. At 500 K , for a reversible reaction $\mathrm{A}_{2(\mathrm{~g})}+\mathrm{B}_{2(\mathrm{~g})} \rightleftharpoons 2 \mathrm{AB}_{(\mathrm{g})}$ in a closed container, $\mathrm{K}_{\mathrm{C}}=2 \times 10^{-5}$. In the presence of catalyst, the equilibrium is attaining 10 times faster. The equilibrium constant K_{C} in the presence of catalyst at the same temperature is
(A) 2×10^{-10}
(B) 2×10^{-5}
(C) 2×10^{-4}
(D) 2×10^{-6}

Ans. B

Sol. Catalyst does not affects the K_{C}, only T can alter the value of K_{C} of a given reaction.
37. A weak acid with $\mathrm{pK}_{\mathrm{a}} 5.9$ and weak base with $\mathrm{pK}_{\mathrm{b}} 5.8$ are mixed in equal proportions. pH of the resulting solution is
(A) 7
(B) 7.05
(C) 7.005
(D) 7.5

Ans. B
Sol. $\mathrm{p}^{\mathrm{H}}=7+\frac{1}{2}\left(\mathrm{p}^{\mathrm{K}_{\mathrm{a}}}-\mathrm{p}^{\mathrm{K}_{\mathrm{b}}}\right)$
$=7+\frac{1}{2}(5.9-5.8)$
$=7.05$
38. Temperature of $25^{\circ} \mathrm{C}$ in Fahrenheit and Kelvin scale respectively are
(A) $45^{\circ} \mathrm{F}$ and 260.15 K
(B) $47^{\circ} \mathrm{F}$ and 312.15 K
(C) $77^{\circ} \mathrm{F}$ and 298.15 K
(D) $17^{\circ} \mathrm{F}$ and 298.15 K

Ans. C

Sol. $\mathrm{K}=273.15+{ }^{\circ} \mathrm{C}$
$\mathrm{F}=\frac{9}{5}{ }^{\circ} \mathrm{C}+32$
39. The number of protons, neutrons and electrons in the ion ${ }_{16}^{32} \mathrm{~S}^{2-}$ respectively are
(A) $18,16,16$
(B) $16,16,16$
(C) $16,18,16$
(D) $16,16,18$

Ans. D
Sol. No. of Protons $=16$
No. of Neutrons $=32-16=16$
No. of electrons $=16+2=18$
40. The correct order of first ionisation enthalpy of given elements is
(A) $\mathrm{C}<\mathrm{B}<\mathrm{Be}<\mathrm{Li}$
(B) $\mathrm{Li}<\mathrm{Be}<\mathrm{B}<\mathrm{C}$
(C) $\mathrm{Li}<\mathrm{B}<\mathrm{Be}<\mathrm{C}$
(D) $\mathrm{Be}<\mathrm{Li}<\mathrm{B}<\mathrm{C}$

Ans. C

Sol. $\mathrm{Be}>\mathrm{B}$
41. Which of the following statements is INCORRECT?
(A) Bond length of $\mathrm{O}_{2}<$ Bond length of O_{2}^{2-}
(B) Bond order of $\mathrm{O}_{2}>$ Bond order of O_{2}^{2-}
(C) Bond length $\mathrm{O}_{2}>$ Bond length of O_{2}^{2+}
(D) Bond order of $\mathrm{O}_{2}^{+}<$Bond order of O_{2}^{2-}

Ans. D
Sol.
B.O $\quad \mathrm{O}_{2} \quad \mathrm{O}_{2}^{+} \quad \mathrm{O}_{2}^{2+} \mathrm{O}_{2}^{-1} \mathrm{O}_{2}^{2-}$

$$
\begin{array}{lllll}
2 & 2.5 & 3 & 1.5 & 1
\end{array}
$$

B. $\mathrm{L} \propto \frac{1}{\text { B.O }}$
B. $\mathrm{O}=\mathrm{O}_{2}^{+2}>\mathrm{O}_{2}^{+}>\mathrm{O}_{2}>\mathrm{O}_{2}^{-}>\mathrm{O}_{2}^{2-}$
B.L $=\mathrm{O}_{2}^{2+}<\mathrm{O}_{2}^{+}<\mathrm{O}_{2}<\mathrm{O}_{2}^{-}<\mathrm{O}_{2}^{2-}$
42. IUPAC name of the compound is

(A) 1,1,2,2-tetra methylethene
(B) 2,3-dimethyl butene
(C) 2,3-dimethylbut-2-ene
(D) 2, 3 - dimethyl butyne

Ans. C
Sol. 2,3-dimethyl but - 2 - ene
43. Among the following:

The set which represents aromatic species is
(A) II and III
(B) I, II and IV
(C) I, II and III
(D) III, IV and V

Ans. B
Sol. I, II, III
44. Which one of the following gases converts haemoglobin into carboxy haemoglobin?
(A) NO
(B) CO_{2}
(C) CO
(D) O_{2}

Ans. C
Sol. CO
45. What is the oxidation number of S in $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$?
(A) +7
(B) +6
(C) +5
(D) +4

Ans. B

Sol.

$2 x+2+2(-1)+6(-2)=0$
$x=+6$
46. A 30% solution of hydrogen peroxide is
(A) '50 volume' hydrogen peroxide
(B) '100 volume' hydrogen peroxide
(C) '30 volume' hydrogen peroxide
(D) '10 volume' hydrogen peroxide

Ans. B
Sol. $30 \%(\mathrm{w} / \mathrm{v}) \mathrm{H}_{2} \mathrm{O}_{2}$ solution is equal to $100 \mathrm{v} \mathrm{H}_{2} \mathrm{O}_{2}$
47. A pair of amphoteric oxides is
(A) $\mathrm{BeO}, \mathrm{MgO}$
(B) $\mathrm{BeO}, \mathrm{ZnO}$
(C) $\mathrm{Al}_{2} \mathrm{O}_{3}, \mathrm{Li}_{2} \mathrm{O}$
(D) $\mathrm{BeO}, \mathrm{BO}_{3}$

Ans. B

Sol.
48. The composition of water gas is
(A) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})}$
(B) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{H}_{2}(\mathrm{~g})$
(C) $\mathrm{CO}_{(\mathrm{g})}+\mathrm{N}_{2}(\mathrm{~g})$
(D) CH_{4} (g)

Ans B
Sol.
49. The swelling in feet and ankles of an aged person due to sitting continuously for long hours during travel, is reduced by soaking the feet in warm salt water. This is because of:
(A) Edema
(B) Diffusion
(C) Reverse Osmosis
(D) Osmosis

Ans D
Sol.
50. A sample of water is found to contain
$5.85 \%\left(\frac{\mathrm{w}}{\mathrm{w}}\right)$ of AB (molecular mass 58.5) and
9.50\% $\left(\frac{\mathrm{W}}{\mathrm{w}}\right) \mathrm{XY}_{2}$ (molecular mass 95).

Assuming 80\% ionisation of AB and 60% ionisation of XY_{2}, the freezing point of water sample is [Given: K_{f} for water $1.86 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$ Freezing point of pure water is 273 K and
A,B and Y are monovalent ions)
(A) 280.44 K
(B) 281.75 K
(C) 264.25 K
(D) 265.56 K

Ans C

Sol.
AB
$\mathbf{X Y} \mathbf{2}_{2}$
5.85\%
9.5\%
$\mathrm{m}=\frac{5.85}{58.5} \times \frac{1000}{84.65}$
$\mathrm{m}=\frac{9.5}{95} \times \frac{1000}{84.65}$
$=1.181 \quad=1.181$
$\alpha=0.8 \quad \alpha=0.6$
$\mathrm{I}=1+(2-1) 0.8=1.8 \quad 1=1+(3-1) 0.6=2.2$
$\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{K}_{\mathrm{f}}\left[\mathrm{i}_{1} \mathrm{~m}_{1}+\mathrm{i}_{2} \mathrm{~m}_{2}\right]$
$=1.86(1.8(1.81)+2.2(1.181))$
$=1.86(4.72)=8.78$
$\mathrm{T}_{\mathrm{f}}^{\mathrm{s}}=264.25 \mathrm{~K}$
51. Match the column A (type of crystalline solid) with the column B (example for each type):

Column-A
P. Molecular Solid
Q. Ionic Solid
R. Metallic Solid
S. Network Solid
(A) P - ii $\quad \mathrm{Q}$ - iv $\quad \mathrm{R}$ - iii $\quad \mathrm{S}$ - i
(B) P-iii $\quad \mathrm{Q}$ - IV $\quad \mathrm{R}$ - ii $\quad \mathrm{S}-\mathrm{i}$
(C) P-iii $\quad \mathrm{Q}$ - i $\quad \mathrm{R}$ - ii $\quad \mathrm{S}$ - iv
(D) P-iv $\quad \mathrm{Q}$ - iii $\quad \mathrm{R}$ - ii $\quad \mathrm{S}-\mathrm{i}$

Ans B
Sol. Molecular solid $\mathrm{H}_{2} \mathrm{O}$
Ionic solid MgO
Metallic solid Mg
Network solid \Rightarrow SIC
52. A metal crystallises in a body centered cubic lattice with the metallic radius $\sqrt{3}{ }^{0}$. The volume of the unit cell in m^{3} is
(A) 6.4×10^{-29}
(B) 4×10^{-10}
(C) 64×10^{-29}
(D) 4×10^{-29}

Ans A
Sol. $\quad \mathrm{BCCr}=\frac{\sqrt{3} \mathrm{a}}{4}$
$\mathrm{a}=\frac{4 \mathrm{r}}{\sqrt{3}}=\frac{4 \times \sqrt{3} \times 10^{-10}}{\sqrt{3}}=4 \times 10^{-10}$
$a^{3}=64 \times 10^{-30} \Rightarrow 6.4 \times 10^{-29}$
53. If 'a' stands for the edge length of the cubic systems - The ratio of radii in simple cubic, body centered cubic and face centered cubic unit cells is
(A) $\frac{1}{2}$ a: $\frac{\sqrt{3}}{2} a: \frac{\sqrt{2}}{2} a$
(B) $\frac{1}{2} \mathrm{a}: \sqrt{3} \mathrm{a}: \frac{1}{\sqrt{2}} \mathrm{a}$
(C) $1 a: \sqrt{3} a: \sqrt{2} a$
(D) $\frac{1}{2} a: \frac{\sqrt{3}}{4} a: \frac{1}{2 \sqrt{2}} a$

Ans D
Sol.
54. Dimerisation of solute molecules in low dielectric constant solvent is due to:
(A) Co-ordinate bond
(B) Ionic bond
(C) Hydrogen bond
(D) Covalent bond

Ans C

Sol.
55. For a reaction, the value of rate constant at 300 K is $6.0 \times 10^{5} \mathrm{~s}^{-1}$. The value of Arrhenius factor A at infinitely high temperature is:
(A) $\frac{6 \times 10^{-5}}{300}$
(B) 6×10^{5}
(C) $6 \times 10^{5} \times \mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}$
(D) $\mathrm{e}^{-\mathrm{Ea} / 300 \mathrm{R}}$

Ans B
Sol. $K=A e^{-\frac{\varepsilon a}{R T}}$ at $T=\alpha$
$K=A=6 \times 10^{5}$
56. The rate constants k_{1} and k_{2} for two different reactions are $10^{16} \times \mathrm{e}^{-2000 / \mathrm{T}}$ and $10^{15} \times \mathrm{e}^{-1000 / \mathrm{T}}$ respectively. The temperature at which
$\mathrm{k}_{1}=\mathrm{k}_{2}$ is:
(A) $\frac{1000}{2.303} \mathrm{~K}$
(B) 1000 K
(C) $\frac{2000}{2.303} \mathrm{~K}$
(D) 2000 K

Ans A
Sol. $K_{1}=10^{16} \times \mathrm{e}^{\frac{-2000}{\mathrm{~T}}}$
$K_{2}=10^{15} \times e^{\frac{-1000}{T}}$
$\mathrm{K}_{1}=\mathrm{K}_{2}$
$10^{16} \times \mathrm{e}^{\frac{-2000}{\mathrm{~T}}}=10^{15} \times \mathrm{e}^{\frac{-1000}{\mathrm{~T}}}$
$10=e^{\frac{1000}{T}}$
$\ln 10=\frac{1000}{T} \ln _{e}$
$2.303 \log 10=\frac{1000}{T}$
$\mathrm{T}=\frac{1000}{2.303}$
57. During the electrolysis of brine, by using inert electrodes,
(A) Na deposits on cathode
(B) Cl_{2} liberates at anode
(C) O_{2} liberates at anode
(D) H_{2} liberates at anode

Ans B
Sol.
58. Consider the following 4 electrodes
$\mathrm{A}: \mathrm{Ag}^{+}(0.0001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{B}: \mathrm{Ag}^{+}(0.1 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}$
$\mathrm{C}: \mathrm{Ag}^{+}(0.01 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})}$;
$\mathrm{D}: \mathrm{Ag}^{+}(0.001 \mathrm{M}) / \mathrm{Ag}_{(\mathrm{s})} ; \mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}=+0.80 \mathrm{~V}$
Then reduction potential in volts of the electrodes in the order
(A) A $>$ D $>$ C $>$ B
(B) A $>$ B $>$ C $>$ D
(C) B $>$ C $>$ D $>$ A
(D) C $>$ D $>$ A $>$ B

Ans C
Sol. $\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}}=\mathrm{E}_{\mathrm{Ag}^{+} / \mathrm{Ag}^{0}}^{0}+\frac{0.059}{\mathrm{n}} \log \left[\mathrm{Ag}^{+}\right]$
As concentration of metal ion increases reduction potential of metal electrode also increases
$\mathrm{E} \propto$ conc.
$\mathrm{B}>\mathrm{C}>\mathrm{D}>\mathrm{A}$
59. The resistance of 0.1 M weak acid HA in a conductivity cell is $2 \times 10^{3} \mathrm{Ohm}$.The cell constant of the cell is $0.78 \mathrm{Cm}^{-1}$ and $\lambda_{\mathrm{m}}^{\circ}$ of acid HA is $390 \mathrm{~S} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$. The pH of the Solution is
(A) 5
(B) 3
(C) 3.3
(D) 4.2

Ans B
Sol. $\mathrm{C}=0.1 \mathrm{M} \quad \Lambda_{\mathrm{m}}^{0}=390 \mathrm{~s} \mathrm{~cm}^{2} \mathrm{~mol}^{-1}$
$\mathrm{R}=2 \times 10^{3}$ ohm
$\mathrm{G}^{*}=0.78 \mathrm{~cm}^{-1}$
$\mathrm{K}=\frac{\mathrm{R}}{\mathrm{G}^{*}}=\frac{0.78}{2 \times 10^{3}}=3.9 \times 10^{-4}$
$\Lambda_{\mathrm{m}}=\frac{\mathrm{K} \times 1000}{\mathrm{C}}=\frac{3.9 \times 10^{-4} \times 1000}{0.1}=3.9$
$\alpha=\frac{\Lambda_{\mathrm{m}}}{\Lambda_{\mathrm{m}}^{0}}=\frac{3.9}{390}=10^{-2}$
$\left[\mathrm{H}^{+}\right]=\mathrm{c} \alpha=0.1 \times 10^{-2}=10^{-3}$
$\mathrm{pH}=-\log 10^{-3}=3$
60. In which one of the following reactions, rate constant has the unit $\mathrm{molL}^{-1} \mathrm{~s}^{-1}$?
(A) $2 \mathrm{NO}_{(\mathrm{g})}+\mathrm{O}_{2(\mathrm{~g})} \rightarrow 2 \mathrm{NO}_{2(\mathrm{~g})}$
(B) Decomposition of HI on the surface of Gold
(C) Acid catalysed hydrolysis of $\mathrm{CH}_{3} \mathrm{COOCH}_{3}$
(D) $\mathrm{CHCl}_{3}+\mathrm{Cl}_{2} \rightarrow \mathrm{CCl}_{4}+\mathrm{HCl}$

Ans B
Sol. Zero order reaction

