

DO RIGHT

DR ACADEMY DO RIGHT FOR GENUINE EDUCATION

HOSKOTE - MALUR ROAD, ISRI CROSS, KATTIGENAHALLI, JADIGENAHALLI HOBLI, BENGALURU - 562114 Phone : 9741332998 7760575487/9535527713

PLOT NO.87, VAHINI NIVAS MATRUSRI NAGAR COLONY, HAFEEZ PET, MIYAPUR, HYDERABAD - 500049 Phone : 8977548407 8977548408 / 8977548409

KCET EXAMINATION - 2024
SUBJECT : CHEMISTRY
VERSION : A2

1. Which of the following set of polymers are used as fibre?
(i) Teflon
(ii) Starch
(iii) Terylene
(iv) Orlon
(A) (i) and (ii)
(B) (ii) and (iii)
(C) (iii) and (iv)
(D) (i) and (iv)

Ans. C
Sol. Terylene and orlon are fibres
2. The biodegradable polymer obtained by polymerisation, of Glycine and Aminocaproic acid is
(A) Nylon 6
(B) PHBV
(C) Nylon 2 - Nylon 6
(D) Nylon 6, 10

Ans. C
Sol. Nylon 2 - Nylon 6 is a biodegradable polymer
3. The compound

(A) Sucralose
(B) Aspartame
(C) Saccharin
(D) Alitame

Ans. NO OPTION
Sol. Saccharin structure
4. Which one of the following is a cationic detergent?
(A) Cetyltrimethylammonium bromide
(B) Sodium dodecylbenzene sulphonate
(C) Dodecylbenzene sulphonic acid
(D) Dodecylbenzene

Ans. A
Sol. Cetyltrimethylammonium bromide is a cationic detergent
5. The type of linkage present between nucleotides is
(A) Phosphoester linkage
(B) Phosphodiester linkage
(C) Amide linkage
(D) Glycosidic linkage

Ans. B
Sol. Nucleotides are joined by Phosphodiester linkage
6. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)-$ glucose are
(A) Enantiomers
(B) Conformers
(C) Epimers
(D) Anomers

Ans. D
Sol. $\alpha-\mathrm{D}-(+)-$ glucose and $\beta-\mathrm{D}-(+)-$ glucose are anomeric at first carbon so called anomers
7. Propanone and Propanal are
(A) Position isomers
(B) Functional isomers
(C) Chain isomers
(D) Geometrical isomers

Ans. B
Sol. Propanone and Propanal are functional isomers
8. Sodium ethanoate on heating with soda lime gives ' X '. Electrolysis of aqueous solution of sodium ethanoate gives ' Y '. ' X ' and ' Y ' respectively are
(A) Methane and Ethane
(B) Methane and Methane
(C) Ethane and Methane
(D) Ethane and Ethane

Ans. A
Sol.

$2 \mathrm{CH}_{3} \mathrm{COONa}+2 \mathrm{H}_{2} \mathrm{O} \xrightarrow[\mathrm{Y}]{\Delta} \mathrm{C}_{2} \mathrm{H}_{6}+2 \mathrm{NaOH}+2 \mathrm{CO}_{2}+\mathrm{H}_{2}$
$\mathrm{X}=\mathrm{CH}_{4}$
$\mathrm{Y}=\mathrm{C}_{2} \mathrm{H}_{6}$
9. But-1-yne on reaction with dil. $\mathrm{H}_{2} \mathrm{SO}_{4}$ in presence of Hg^{2+} ions at 333 K gives
(A)

(B)

(C)

(D)

Ans. A
Sol.

10. Biologically active adrenaline and ephedrine used to increase blood pressure contain
(A) Primary amino group
(B) Secondary amino group
(C) Tertiary amino group
(D) Quaternary ammonium salt

Ans. B

Sol. Adrenaline and ephedrine contains secondary amino group
11. In the reaction

Aniline $\xrightarrow[\text { dil. } \mathrm{HCl}]{\mathrm{NaNO}_{2}} \mathrm{P} \xrightarrow[\text { NaOH }]{\text { Phenol }} \mathrm{Q}$.
(A) $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{Cl}$
(B) ortho-hydroxyazobenzene
(C) para-hydroxyazobenzene
(D) meta-hydroxyazobenzene

Ans. C

Sol.

(Q)
12. The female sex hormone which is responsible for the development of secondary female characteristics and participates in the control of menstrual cycle is
(A) Testosterone
(B) Estradiol
(C) Insulin
(D) Thyroxine

Ans. B
Sol. Conceptual
13. In the following scheme of reaction.

X, Y and Z respectively are:
(A) AgF , alcoholic KOH and benzene
(B) HF, aqueous KOH and Na in dry ether
(C) $\mathrm{Hg}_{2} \mathrm{~F}_{2}$, alcoholic KOH and Na in dry ether
(D) CoF_{2}, aqueous KOH and benzene

Ans. C
Sol.

14. 8.8 g of monohydric alcohol added to ethyl magnesium iodide in ether liberates $2240 \mathrm{~cm}^{3}$ of ethane at STP. This monohydric alcohol when oxidised using pyridinium-chloromate, forms a carbonyl compound that answers silver mirror test (Tollen's test). The monohydric alcohol is
(A) butan-2-ol
(B) 2, 2-dimethyl propan-1-ol
(C) pentan-2-ol
(D) 2, 2-dimethyl ethan-1-ol

Ans. B
Sol. 8.8 g of monohydric alcohol $\leftarrow 2240 \mathrm{~cm}^{3}$

$$
88 \mathrm{~g} \quad \leftarrow 22400 \mathrm{~cm}^{3}
$$

The carbonyl compound that can oxidise tollens reagent i.e., Aldehyde and which is oxidising product of Primary alcohol.
15. When a tertiary alcohol ' A ' $\left(\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}\right)$ reacts with $20 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ at 358 K , it gives a compound ' B ' $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right)$ as a major product. The IUPAC name of the compound ' B ' is
(A) But-1-ene
(B) But-2-ene
(C) Cyclobutane
(D) 2-Methylpropene

Ans. D
Sol.

16. PCC is
(A) $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}+$ Pyridine
(B) $\mathrm{CrO}_{3}+\mathrm{CHCl}_{3}$
(C) $\mathrm{CrO}_{3}+\mathrm{H}_{2} \mathrm{SO}_{4}$
(D) A complex of chromium trioxide with pyridine +HCl
Ans. D
Sol. PCC is pyridinium chlorochromate
$\mathrm{C}_{5} \mathrm{H}_{5} \stackrel{\oplus}{\mathrm{~N}} \mathrm{HCrO}_{3} \mathrm{Cl}^{-}$
17. On treating 100 mL of 0.1 M aqueous solution of the complex $\mathrm{CrCl}_{3} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ with excess of $\mathrm{AgNO}_{3}, 2.86 \mathrm{~g}$ of AgCl was obtained. The complex is
(A) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{3} \mathrm{Cl}_{3}\right] \cdot 3 \mathrm{H}_{2} \mathrm{O}$
(B) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4} \mathrm{Cl}_{2}\right] \mathrm{Cl} \cdot 2 \mathrm{H}_{2} \mathrm{O}$
(C) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}^{2} \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}\right.$
(D) $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6} \mathrm{Cl}_{3}\right]$

Ans. C
Sol. 0.01 moles of an aqueous solution of $\mathrm{CrCl}_{3} .6 \mathrm{H}_{2} \mathrm{O}$
given 2.86 g AgCl means,
1 mole of aqueous solution $=2$ moles of AgCl
$143.5 \times 2=286 \mathrm{~g}$ of AgCl
So, $\left[\mathrm{Cr}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{Cl}\right] \mathrm{Cl}_{2} \cdot \mathrm{H}_{2} \mathrm{O}$
18. The complex compounds $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ are
(A) Coordination isomers
(B) Geometrical isomers
(C) Optical isomers
(D) Ionisation isomers

Ans. D
Sol. $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{SO}_{4}\right] \mathrm{Br}$ and $\left[\mathrm{Co}\left(\mathrm{NH}_{3}\right)_{5} \mathrm{Br}\right] \mathrm{SO}_{4}$ are Ionisation isomers.
19. When of the following statements are true about $\left[\mathrm{CoF}_{6}\right]^{3-}$ ion?
I) The complex has octahedral geometry.
II) Coordination number of Co is 3 and oxidation state is +6 .
(III) The complex is $\mathrm{sp}^{3} \mathrm{~d}^{2}$ hybridised
(IV) It is a high spin complex
(A) I, II and IV
(B) I, III and IV
(C) II and IV
(D) II, III and IV

Ans. B
Sol. I, III and IV statements are true.
20. A haloalkane undergoes $\mathrm{S}_{\mathrm{N}^{2}}$ or $\mathrm{S}_{\mathrm{N}^{1}}$ reaction depending on
(A) Solvent used in the reaction
(B) Low temperature
(C) The type of halogen atom
(D) Stability of the haloalkane

Ans. A
Sol. $\mathrm{S}_{\mathrm{N}^{2}}$ or $\mathrm{S}_{\mathrm{N}^{1}}$ reaction depends on solvent used in the reaction.
21. 2-Methyl propane can be prepared by Wurtz reaction. The haloalkanes taken along with metallic sodium and dry ether are :
(A) chloromethane and 2-chloropropane
(B) chloroethane and chloromethane
(C) chloroethane and 1-chloropropane
(D) chloromethane and 1-chloropropane

Ans. A
Sol.

22. In the analysis of III group basic radicals of salts, the purpose of adding $\mathrm{NH}_{4} \mathrm{Cl}_{(\mathrm{s})}$ to
$\mathrm{NH}_{4} \mathrm{OH}$ is :
(A) to increase the concentration of OH^{-}ions.
(B) to precipitate the radicals of group IV and V.
(C) to suppress the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$.
(D) to introduce Cl^{-}ions.

Ans. C
Sol. To suppress the dissociation of $\mathrm{NH}_{4} \mathrm{OH}$ due to the common ion effect
23. Solubility product of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at a given temperature in pure water is $4 \times 10^{-9}\left(\mathrm{moL}^{-1}\right)^{2}$ Solubility of $\mathrm{CaC}_{2} \mathrm{O}_{4}$ at the same temperature is
(A) $6.3 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $2 \times 10^{-5} \mathrm{~mol} \mathrm{~L}^{-1}$
(C) $2 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $6.3 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1}$

Ans. A
Sol. $\mathrm{CaC}_{2} \mathrm{O}_{4} \rightarrow \mathrm{Ca}^{2+}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$

$\mathrm{S} \quad \mathrm{S}$

$\mathrm{K}_{\mathrm{sp}}=(\mathrm{S})(\mathrm{S})$
$4 \times 10^{-9}=S^{2}$
$S=\sqrt{40 \times 10^{-10}}=6.3 \times 10^{-5} \mathrm{~mol} / \mathrm{L}$
24. In the reaction between moist SO_{2} and acidified permanganate solution :
(A) SO_{2} is oxidised to SO_{4}^{2-}
MnO_{4}^{-}is reduced to Mn^{2+}
(B) SO_{2} is reduced to S
MnO_{4}^{-}is oxidised to MnO_{4}
(C) SO_{2} is oxidised to SO_{3}^{2-}
MnO_{4}^{-}is reduced to MnO_{2}
(D) SO_{2} is reduced to $\mathrm{H}_{2} \mathrm{~S}$
MnO_{4}^{-}is oxidised to MnO_{4}
Ans. A
Sol. $2 \mathrm{MnO}_{4}^{-}+3 \mathrm{SO}_{2}+4 \mathrm{H}^{+} \rightarrow 2 \mathrm{Mn}^{2+}+3 \mathrm{SO}_{4}^{2-}+2 \mathrm{H}_{2} \mathrm{O}$
25. Which one of the following properties is generally not applicable to ionic hydrides?
(A) Non-volatile
(B) Non-conducting in solid state
(C) Crystalline
(D) Volatile

Ans. D
Sol. Ionic hydrides exhibit high Mpt i.e, Non volatile
26. Which one of the following nitrate will decompose to give NO_{2} on heating?
(A) NaNO_{3}
(B) KNO_{3}
(C) RbNO_{3}
(D) LiNO_{3}

Ans. D
Sol. $4 \mathrm{LiNO}_{3} \xrightarrow{\Delta} 2 \mathrm{Li}_{2} \mathrm{O}+4 \mathrm{NO}_{2}+\mathrm{O}_{2}$
27. Which of the following halides cannot be hydrolysed?
(A) CCl_{4}
(B) SiCl_{4}
(C) GeCl_{4}
(D) SnCl_{4}

Ans. A
Sol. Due to the absence of d - orbitals.
28. 0.48 g of an organic compound on complete combustion produced 0.22 g of CO_{2}. The percentage of C in the given organic compound is :
(A) 25
(B) 50
(C) 12.5
(D) $87 \cdot 5$

Ans. C
Sol. $\% \mathrm{C}=\frac{12}{44} \times \frac{\mathrm{wt} \text {. of } \mathrm{CO}_{2}}{\text { wt. of O.C }} \times 100$
$\% \mathrm{C}=\frac{12}{44} \times \frac{0.22}{0.48} \times 100=\frac{600}{48}=12.5 \%$
29. In the given sequence of reactions, identify ' P ', ' Q ' and ' S ' respectively.

$\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{Br} \xrightarrow{\mathrm{R}} \mathrm{CH} \equiv \mathrm{CH} \xrightarrow{\mathrm{S}} \mathrm{C}_{6} \mathrm{H}_{6}$
(A) $\mathrm{Br}_{2}, \mathrm{Alc}, \mathrm{KOH}, \mathrm{NaOH}, \mathrm{Al}_{2} \mathrm{O}_{3}$
(B) $\mathrm{HBr}, \mathrm{Alc}, \mathrm{KOH}, \mathrm{CaC}_{2}, \mathrm{KMnO}_{4}$
(C) $\mathrm{HBr}, \mathrm{Alc}, \mathrm{KOH}, \mathrm{NaNH}_{2}$, Red hot iron tube
(D) $\mathrm{Br}_{2}, \mathrm{Alc}, \mathrm{KOH}, \mathrm{NaNH}_{2}$, Red hot iron tube

Ans. D
Sol

30. The first chlorinated organic insecticide proparod is :
(A)Gammaxene
(B)Chloroform
(C) COCl_{2}
(D)DDT

Ans. D
Sol. Dichloro Diphenyl Trichloro ethane (D.D.T)
31. Which of the following crystals has the unit cell such that $\mathrm{a}=\mathrm{b} \neq \mathrm{c}$ and $\alpha=\beta=90^{\circ}, \gamma=120^{\circ}$?
(A) Zinc blende
(B) Graphite
(C) Cinnabar
(D) Potassium dichromate

Ans. B
Sol. Conceptual
32. MnO exhibits:
(A) Ferrimagnetism
(B) Antiferromagnetism
(C) Ferromagnetism
(D) Paramagnetism

Ans. B
Sol. Conceptual
33. The number of atoms in 4.5 g of a face-centred cubic crystal with edge length 300 pm is:
(Given density $=10 \mathrm{~g} \mathrm{~cm}^{-3}$ and
$\mathrm{N}_{\mathrm{A}}=6.022 \times 10^{23}$)
(A) 6.6×10^{20}
(B) 6.6×10^{23}
(C) 6.6×10^{19}
(D) 6.6×10^{22}

Ans. D
Sol. $\mathrm{d}=\frac{\mathrm{Z} \times \mathrm{M}}{\mathrm{N}_{\mathrm{A}} \times \mathrm{a}^{3}}$
$\Rightarrow \mathrm{M}=\frac{10 \times 6.022 \times 10^{23} \times\left(300 \times 10^{-10}\right)^{3}}{4}$
$\mathrm{M}=40.5 \mathrm{gm}$
Therefore $40.5 \mathrm{gm} \rightarrow 6.022 \times 10^{23}$ atoms
$4.5 \mathrm{gm} \rightarrow \mathrm{x}$
$\mathrm{x}=6.6 \times 10^{22}$ atoms
34. Vapour pressure of a solution containing 18 g of glucose and 178.2 g of water at $100^{\circ} \mathrm{C}$ is:
(Vapour pressure of pure water at $100^{\circ} \mathrm{C}=760$ torr)
(A) 76.0 torr
(B) 752.0 torr
(C) 7.6 torr
(D) 3207.6 torr

Ans. B
Sol. $\mathrm{n}_{\mathrm{H}_{2} \mathrm{O}}=\frac{178.2}{18}=9.9 ; \mathrm{n}_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\frac{18}{180}=0.1$
$\chi_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\frac{0.1}{10}=0.01$
$\frac{\mathrm{P}_{0}-\mathrm{P}_{\mathrm{s}}}{\mathrm{P}_{0}}=\chi_{\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}$
$\frac{760-P_{s}}{760}=0.01$
$760-\mathrm{P}_{\mathrm{s}}=7.6$
$\mathrm{P}_{\mathrm{s}}=752.4$ torr
35. A mixture of phenol and aniline shows negative deviation from Raoult's law. This is due to the formation of:
(A) Polar covalent bond
(B) Non-polar covalent bond
(C) Intermolecular Hydrogen bond
(D) Intramolecular Hydrogen bond

Ans. C
Sol. Due to intermolecular hydrogen bond

KCET - 2024 (CODE - A2)
36. Which one of the following pairs will show positive deviation from Raoult's Law?
(A) Water - HCl
(B) Benzene-Methanol
(C) Water $-\mathrm{HNO}_{3}$
(D) Acetone - Chloroform

Ans. B
Sol. Conceptual
37. How many Coulombs are required to oxidise 0.1 mole of $\mathrm{H}_{2} \mathrm{O}$ to oxygen?
(A) $1.93 \times 10^{5} \mathrm{C}$
(B) $1.93 \times 10^{4} \mathrm{C}$
(C) $3.86 \times 10^{4} \mathrm{C}$
(D) $9.65 \times 10^{3} \mathrm{C}$

Ans. B

Sol. $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2}+\frac{1}{2} \mathrm{O}_{2}$
1 mole $\mathrm{H}_{2} \mathrm{O} \rightarrow 2$ Faradays $=2 \times 96500 \mathrm{C}$
0.1 mole $\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{xC}$
$\mathrm{x}=\frac{2 \times 96500 \times 0.1}{1}=19300 \mathrm{C}=1.93 \times 10^{4} \mathrm{C}$
38. A current of 3 A is passed through a molten calcium salt for 1 hr 47 min 13 sec . The mass of calcium deposited is:
(Molar mass of $\mathrm{Ca}=40 \mathrm{~g} \mathrm{~mol}^{-1}$)
(A) 6.0 g
(B) 2.0 g
(C) 8.0 g
(D) 4.0 g

Ans. D
Sol. $\mathrm{w}=\frac{\text { Eit }}{96500}$
$=\frac{20 \times 3 \times 6432}{96500}$
$=3.99 \approx 4$
39. The value of ' A ' in the equation $\lambda_{m}=\lambda_{m}^{0}-A \sqrt{C}$ is same for the pair
(A) NaCl and CaCl_{2}
(B) CaCl_{2} and MgSO_{4}
(C) NaCl and KBr
(D) MgCl_{2} and NaCl

Ans. C
Sol. Conceptual
40. For the reaction, $\mathrm{A} \rightleftharpoons \mathrm{B}, \mathrm{E}_{\mathrm{a}}=50 \mathrm{~kJ} \mathrm{~mol}^{-1}$ and $\Delta \mathrm{H}=-20 \mathrm{~kJ} \mathrm{~mol}^{-1}$. When a catalyst is added, E_{a} decreases by $10 \mathrm{~kJ} \mathrm{~mol}^{-1}$. What is the E_{a} for the backward reaction in the presence of catalyst?
(A) $60 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(B) $40 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(C) $70 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(D) $20 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. A
Sol. $\Delta \mathrm{H}=\left(\mathrm{E}_{\mathrm{a}}\right)_{\mathrm{f}}-\left(\mathrm{E}_{\mathrm{a}}\right)_{\mathrm{b}}$
$-20=40-\left(E_{a}\right)_{b}$
$\left(E_{a}\right)_{b}=60$
41. For the reaction $\mathrm{PCl}_{5} \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$, rate and rate constant are $1.02 \times 10^{-4} \mathrm{~mol} \mathrm{~L}^{-1} \mathrm{~S}^{-1}$ and $3.4 \times 10^{-5} \mathrm{~s}^{-1}$ respectively at a given instant. The molar concentration of PCl_{5} at that instant is:
(A) $8.0 \mathrm{~mol} \mathrm{~L}^{-1}$
(B) $3.0 \mathrm{~mol} \mathrm{~L}^{-1}$
(C) $0.2 \mathrm{~mol} \mathrm{~L}^{-1}$
(D) $2.0 \mathrm{~mol} \mathrm{~L}^{-1}$

Ans. B
So1. Rate $=\mathrm{k}\left[\mathrm{PCl}_{5}\right]$
$\frac{1.02 \times 10^{-4}}{3.4 \times 10^{-5}}=\left[\mathrm{PCl}_{5}\right]$
$\therefore\left[\mathrm{PCl}_{5}\right]=3.0 \mathrm{~mol} / \mathrm{lit}$
42. Which one of the following does not represent Arrhenius equation?
(A) $\log \mathrm{k}=\log \mathrm{A}-\frac{\mathrm{Ea}}{2.303 \mathrm{RT}}$
(B) $\mathrm{k}=\mathrm{Ae}^{-\mathrm{Ea} / \mathrm{RT}}$
(C) In $k=-\frac{E a}{R T}+$ In A
(D) $\mathrm{k}=\mathrm{Ae}^{\mathrm{Ea} / \mathrm{RT}}$

Ans. D
Sol. Conceptual
43. Identify the incorrect statement:
(A) Values of colligative properties of colloidal solution are of small order compared to values of true solution
(B) Tyndall effect is observed only when diameter of the dispersed particles is not much smaller than wavelength of incident light
(C) Colour of colloidal solution depends on the wavelength of light scattered by the dispersed particles
(D) Brownian movement is due to balanced bombardment of molecules of dispersion medium on colloidal particles
Ans. D
Sol. Brownian movement is due to unbalanced bombardment of molecules of dispersion medium on colloidal particles
44. For the coagulations of positively charged hydrated ferric - oxide sol, the flocculating power of the ions is in the order:
(A) $\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(B) $\mathrm{Cl}^{-}>\mathrm{SO}_{4}^{2-}>\mathrm{PO}_{4}^{3-}>\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(C) $\mathrm{SO}_{4}^{2-}=\mathrm{Cl}^{-}=\mathrm{PO}_{4}^{3-}=\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}$
(D) $\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]^{4-}>\mathrm{PO}_{4}^{3-}>\mathrm{SO}_{4}^{2-}>\mathrm{Cl}^{-}$

Ans. D
Sol. flocculating power α charge on the ion
45. Gold sol is not a :
(A) Macromolecular colloid
(B) Lyophobic colloid
(C) Multimolecular colloid
(D) Negatively charged colloid

Ans. A
Sol. Conceptual
46. The incorrect statement about Hall -Heroult process is :
(A) Carbon anode is oxidised to CO and CO_{2}
(B) $\mathrm{Na}_{3} \mathrm{AlF}_{6}$ helps to decrease the melting point of the electrolyte
(C) CaF_{2} helps to increase the conductivity of the electrolyte
(D) Oxidation state of oxygen changes in the overall cell reaction
Ans. D
Sol. Conceptual
47. Select the correct statement :
(A) Roasting involves heating the ore in the absence of air
(B) Calcination involves heating the ore above its melting point
(C) Smelting involves heating the ore with suitable reducing agent and flux below it melting point
(D) Calcination of calcium carbonate is endothermic
Ans. D
Sol. Conceptual
48. $\quad \mathrm{NO}_{2}$ gas is :
(A) Colourless, neutral
(B) Colourless, acidic
(C) Brown, acidic
(D) Brown neutral

Ans. C
Sol. Conceptual
49. Identify the incorrect statement from the following:
(A) Oxides of nitrogen in the atmosphere can cause depletion of the ozone layer
(B) Ozone absorbs the intense ultraviolet radiation of Sun
(C) Depletion of ozone layer is because of its chemical reactions with chlorofluoro alkanes
(D) Ozone absorbs infrared radiation

Ans. D
Sol. Ozone absorbs U.V radiation
50. The correct decreasing order of boiling point of hydrogen halides is:
(A) $\mathrm{HF}>\mathrm{HCl}>\mathrm{HBr}>\mathrm{HI}$
(B) $\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}>\mathrm{HF}$
(C) $\mathrm{HF}>\mathrm{HI}>\mathrm{HBr}>\mathrm{HCl}$
(D) $\mathrm{HI}>\mathrm{HF}>\mathrm{HBr}>\mathrm{HCl}$

Ans. C
Sol. Conceptual
51. The synthetically produced radioactive noble gas by the collision of ${ }_{98}^{249} \mathrm{Cf}$ with ${ }_{20}^{48} \mathrm{Ca}$ is :
(A) Radon
(B) Radium
(C) Oganesson
(D) Xenon

Ans. C
Sol. Oganesson $\mathrm{Z}=118$
${ }_{98}^{249} \mathrm{Cf}+{ }_{20}^{48} \mathrm{Ca} \rightarrow{ }_{118}^{294} \mathrm{Og}+3{ }_{0}^{1} \mathrm{n}$
52. The transition element ($\approx 5 \%$) present with lanthanoid metal in Misch metal is :
(A) Mg
(B) Fe
(C) Zn
(D) Co

Ans. B
Sol. 95% lanthanoid metal and $\approx 5 \%$ iron
53. Match the following :
I. Zn^{2+}
i. d^{8} configuration
II. Cu^{2+}
ii. Colourless
III. Ni^{2+}
iii. $\mu=1.73 \mathrm{BM}$

Codes:

	I	II	III
(A)	i	ii	iii
(B)	ii	iii	i
(C)	ii	i	iii
(D)	i	iii	ii

Ans. B
Sol. $\mathrm{Zn}^{+2}-$ no unpaired electrons
$\mathrm{Cu}^{+2}-\mu=1.73 \mathrm{BM}$
$\mathrm{Ni}^{+2}-\mathrm{d}^{8}$ configuration
54. Which of the following statements related to lanthanoids is incorrect?
(A) Lanthanoids are silvery white soft metals.
(B) Samarium shows +2 oxidation state.
(C) Ce^{+4} solutions are widely used as oxidising agents in titrimetric analysis.
(D) Colour of Lanthanoid ion in solution is due to d-d transition.
Ans. D
Sol. Colour of Lanthanoid ion in solution is due to f-f transition
55. A metalloid is :
(A) Bi
(B) Sb
(C) P
(D) Se

Ans. B and D
Sol. Sb and Se are metalloids.
(According to NCERT of $15^{\text {th }}$ and $16^{\text {th }}$ group)
56. A pair of isoelectronic species having bond order of one is :
(A) $\mathrm{N}_{2}, \mathrm{CO}$
(B) $\mathrm{N}_{2}, \mathrm{NO}^{+}$
(C) $\mathrm{O}_{2}^{2-}, \mathrm{F}_{2}$
(D) $\mathrm{CO}, \mathrm{NO}^{+}$

Ans. C
Sol. $\mathrm{O}_{2}^{2-}, \mathrm{F}_{2}=18$ electrons each
57. Identify the wrong relation for real gases :
(A) $Z=\frac{V_{\text {ideal }}}{V_{\text {real }}}$
(B) $p_{\text {ideal }}=p_{\text {real }}+\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}$
(C) $\mathrm{V}_{\text {real }}=\mathrm{V}_{\text {ideal }}-\mathrm{nb}$
(D) $\left(\mathrm{p}+\frac{\mathrm{a}}{\mathrm{V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT}$

Ans. A
Sol. Compressibility factor $(Z)=\frac{V_{\text {real }}}{V_{\text {ideal }}}$
58. From the diagram

$\Delta_{\mathrm{r}} \mathrm{H}$ for the reaction $\mathrm{C} \rightarrow \mathrm{A}$ is :
(A) +35 J
(B) -15 J
(C) -35 J
(D) +15 J

Ans. \mathbf{C}
Sol. $A \xrightarrow{\Delta \mathrm{H}_{1}} 2 \mathrm{~B} \xrightarrow{\Delta \mathrm{H}_{2}} C$
$\Rightarrow \mathrm{A} \rightarrow \mathrm{C} \quad \Delta \mathrm{H}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}=35 \mathrm{~J}$
Then $\mathrm{C} \rightarrow \mathrm{A} \quad \Delta \mathrm{H}=-35 \mathrm{~J}$
59. For which one of the following mixtures is composition uniform throughout?
(A) Sand and water
(B) Grains and pulses with stone
(C) Mixture of oil and water
(D) Dilute aqueous solution of sugar

Ans. D
Sol. Dilute aqueous solution of sugar is a homogeneous solution.
60. The energy associated with first orbit of He^{+}is:
(A) 0 J
(B) $-8.72 \times 10^{-18} \mathrm{~J}$
(C) $-4.58 \times 10^{-18} \mathrm{~J}$
(D) $-0.545 \times 10^{-18} \mathrm{~J}$

Ans. B
Sol. $E_{n}=-2.18 \times 10^{-18} \times \frac{Z^{2}}{n^{2}}$
$\mathrm{Z}=2, \mathrm{n}=1$
$\mathrm{E}=-2.18 \times 10^{-18} \times \frac{4}{1}=-8.72 \times 10^{-18} \mathrm{~J}$

O. WDO SUNEISE DR DR ACADEMY	

II PU SCIENCE ANNUAL EXAM - 2024 RESULT

177108
dicise 3

9741332998 / 8147397999 / 9535527713
HOSKOTE - MALUR ROAD, ISRI Cross, Kattigenahalli, Jadigenahalli Hobli, Bengaluru.

