PHYSICS

1. An em wave is propagating in a medium with a velocity $\vec{V}=V \hat{i}$. The instantaneous oscillating electric field of this emwave is along $+y$ axis. Then
wave will be along :-
(1) $-z$ direction
(2) $+z$ direction
(3) $-y$ direction
(4) $-x$ direction

Ans. (2)
2 The refractive index of the material of a prism is $\sqrt{2}$ and the angle of the prism is 30°. One of the two refracting surfaces of the prismis made a mirror inwards, by silver coating. A beam of monochromatic light entering the prism from the other face will retrace its path (after reflection from the silvered surface) if its angle of incidence on the prism is :-
(1) 60°
(2) 45°
(3) 30°
(4) zero

Ans. (2)
3. The magnetic potential energy stored in a certain inductor is 25 mJ , when the current in the inductor is 60 mA . This inductor is of inductance :-
(1) 0.138 H
(2) 138.88 H
(3) 1.389 H
(4) 13.89 H

Ans. (4)
4. An object is placed at a distance of 40 cm from a concave mirror of focal length 15 cm . If the object is displaced through a distance of 20 cm towards the mirror, the displacement of the image will be:-
(1) 30 cm away from the mirror
(2) 36 cm away from the mirror
(3) 30 cm towards the mirror
(4) 36 cm towards the mirror

Ans. (2)
5. In the combination of the following gates the output Y can be written in terms of inputs A and B as :-

(1) $\overline{\mathrm{A} \cdot \mathrm{B}}$
(2) $A \cdot \bar{B}+\bar{A} \cdot B$
(3) $\overline{A \cdot B}+A \cdot B$
(4) $\overline{\mathrm{A}+\mathrm{B}}$

Ans. (2)
6. In the circuit shown in the figure, the input voltag e V_{i} is $20 \mathrm{~V}, \mathrm{~V}_{\mathrm{BE}}=0$ and $\mathrm{V} \mathrm{CE}=0$. The values of $\mathrm{I} \quad \mathrm{B}$, I_{C} and β are given by :-

(1) $\mathrm{I}_{\mathrm{B}}=40 \quad \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=10 \mathrm{~mA}, \quad \beta=250$
(2) $I_{B}=25 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \quad \beta=200$
(3) $I_{B}=20 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \quad \beta=250$
(4) $\mathrm{I}_{\mathrm{B}}=40 \mu \mathrm{~A}, \mathrm{I}_{\mathrm{C}}=5 \mathrm{~mA}, \quad \beta=125$

Ans. (4)
7. In ap-njunction diode, change in temperature due to heating :-
(1) affects only reverse resistance
(2) affects only forward resistance
(3) does not affect resistance of p-n junction
(4) affects the overall V - I characteristics of p-njunction
Ans. (4)
8 A small sphere of radius'r' falls from rest inaviscous liquid. As a result, heat is produced due to viscous force. The rate of production of heat when the sphere attains its terminal velocity, is proportional to :-
(1) r^{3}
(2) r^{2}
(3) r^{5}
(4) r^{4}

Ans. (3)
9. A sample of 0.1 g of water at $100 \quad{ }^{\circ} \mathrm{C}$ and normal pressure ($1.013 \times 10^{5} \mathrm{Nm}^{-2}$) requires 54 cal of heat energy to convert to steam at $100 \quad{ }^{\circ} \mathrm{C}$. If the volume of the steam produced is 167.1 cc , the change in internal energy of the sample, is :-
(1) 104.3 J
(2) 208.7 J
(3) 42.2 J
(4) 84.5 J

Ans. (2)
10. Two wires are made of the same material and have the samevolume. The first wire has cross-sectional area A and the second wire has cross-sectional area 3 A . If the length of the first wire is increased by Δl on applying a force F, how much force is needed to stretch the second wire by the same amount ?
(1) 9 F
(2) 6 F
(3) $4 F$
(4) F

Ans. (1)
11. The power radiated by a black body is P and it radiates maximum energy at wavelength λ_{0}. If the temperature of the black body is now changed so that it radiates maximum energy at wavelength $\frac{3}{4} \lambda_{0}$, the power radiated by it becomes nP . The value of n is :-
(1) $\frac{3}{4}$
(2) $\frac{4}{3}$
(3) $\frac{256}{81}$
(4) $\frac{81}{256}$

Ans. (3)
12. A set of ' n ' equal resistors, of value ' R ' each, are connected in series to a battery of emf ' E ' and internal resistance'R'. The current drawnis I. Now, the 'n' resistors are connected in parallel to the same battery. Then the current drawn from battery becomes 10 I . The value of ' n ' is :-
(1) 10
(2) 11
(3) 20
(4) 9

Ans. (1)
13. A battery consists of avariable number'n' of identical cells (having internal resistance 'r' each) which are connected inseries. The terminals of the battery are short-circuited and the current I is measured. Which of thegraphs shows the correct relationshipbetween I and n ?
(1)

(2)

(3)

(4)

Ans. (1)
14. A carbon resistor (47 ± 4.7) $\mathrm{k} \Omega$ is to be marked with rings of different colours for its identification. The colour code sequence will be :-
(1) Violet - Yellow - Orange - Silver
(2) Yellow - Violet - Orange - Silver
(3) Yellow - Green - Violet - Gold
(4) Green - Orange - Violet - Gold

Ans. (2)
15. Which one of the following statements is incorrect ?
(1) Rolling friction is smaller than sliding friction
(2) Limiting value of static friction is directly proportional to normal reactions
(3) Frictional force opposes the relative motion
(4) Coefficient of sliding friction has dimensions of length
Ans. (4)
16. A moving block having mass m, collides with another stationary block having mass 4 m . The lighter block comes to rest after collision. Whenthe initial velocity of the lighter block is v , then the value of coefficient of resistitution (e) will be :-
(1) 0.5
(2) 0.25
(3) 0.8
(4) 0.4

Ans. (2)
17. A body initially at rest and sliding al ong a frictionless track from a height h (as shown in the figure) just completes a vertical circle of diameter $\mathrm{AB}=\mathrm{D}$. The height h is equal to :-

(1) $\frac{3}{2} \mathrm{D}$
(2) D
(3) $\frac{7}{5} \mathrm{D}$
(4) $\frac{5}{4} \mathrm{D}$

Ans. (4)
18. Three objects, A : (a solid sphere), B : (a thin circular disk) and $\mathrm{C}=$ (a circular ring), each have the same mass M and radius R . They all spin with the same angular speed ω about their own symmetry axes. The amounts of work (W) required to bring them to rest, would satisfy the relation :-
(1) $W_{C}>W_{B}>W_{A}$
(2) $W_{A}>W_{B}>W_{C}$
(3) $\mathrm{W}_{\mathrm{B}}>\mathrm{W}_{\mathrm{A}}>\mathrm{W}_{\mathrm{C}}$
(4) $W_{A}>W_{C}>W_{B}$

Ans. (1)
19. A tuning fork is used to produce resonance in aglass tube. The length of the air column in this tube can be adjusted by a variable piston. At room temperature of $27^{\circ} \mathrm{C}$ two successiv resonances are produced at 20 cm and 73 cm column length. If the frequency of the tuning fork is 320 Hz , the velocity of sound in air at $27^{\circ} \mathrm{C}$ is :-
(1) $330 \mathrm{~m} / \mathrm{s}$
(2) $339 \mathrm{~m} / \mathrm{s}$
(3) $350 \mathrm{~m} / \mathrm{s}$
(4) $300 \mathrm{~m} / \mathrm{s}$

Ans. (2)
20. An electron falls from rest through a vertical distancehinauniformand vertically upward directed electric fieldE. The direction of electrical field is now reversed, keeping its magnitude the same. A proton is allowed tofall fromrest in throughthesamevertical distance h. The time fall of the electron, in comparison to the time fall of the proton is :-
(1) smaller
(2) 5 times greater
(3) 10 times greater
(4) equal

Ans. (1)
21. A pendulum is hung from the roof of a sufficiently high building and is moving freely to and frolike a simple harmonic oscillator. The acceleration of the bob of the pendulum is $20 \mathrm{~m} / \mathrm{s} \quad 2$ at a distance of 5 m from the mean position. The time period of oscillation is :-
(1) $2 \pi \mathrm{~s}$
(2) $\pi \mathrm{s}$
(3) 2 s
(4) 1 s

Ans. (2)
22. The electrostatic force between the metal plates of an isolated parallel plate capacitor C having a charge Q and area A , is :-
(1) independent of the distance between the plates.
(2) linearly proportional to the distancebetween the plates
(3) proportional to the square root of the distance between the plates.
(4) inversely proportional to the distance between the plates.
Ans. (1)
23. An electron of mass m with an initial velocity
$\vec{V}=V_{0} \hat{i}\left(V_{0}>0\right)$ enters an electric field $\vec{E}=-E_{0} \hat{i}$
($\mathrm{E}_{0}=$ constant >0) at $\mathrm{t}=0$. If λ_{0} is its de-Broglie wavelength initially, then its de-Broglie wavelength at time t is :-
(1) $\frac{\lambda_{0}}{\left(1+\frac{e E_{0}}{m V_{0}} t\right)}$
(2) $\lambda_{0}\left(1+\frac{e E_{0}}{m V_{0}} t\right)$
(3) $\lambda_{0} t$
(4) λ_{0}

Ans. (1)
24. For a radioactive material, half-life is 10 minutes. If initially there are 600 number of nuclei, the time taken(inminutes) for the disintegration of 450nuclei is :-
(1) 20
(2) 10
(3) 30
(4) 15

Ans. (1)
25. When the light of frequency $2 v_{0}$ (where v_{0} is threshold frequency), is incident on a metal plate, the maximum velocity of electrons emitted is $v \quad 1$. When the frequency of the incident radiation is increased to $5 v_{0}$, the maximumvelocity of electrons emitted from the same plate is $v \quad 2$. The ratio of v_{1} to v_{2} is :-
(1) $1: 2$
(2) $1: 4$
(3) $4: 1$
(4) $2: 1$

Ans. (1)
26. the ratio of kinetic energy to the total energy of an electron ina Bohr orbit of the hydrogen atom, is :-
(1) $1: 1$
(2) $1:-1$
(3) $2:-1$
(4) $1:-2$

Ans. (2)
27. The moment of the force, $\vec{F}=4 \hat{i}+5 \hat{j}-6 \hat{k}$ at $(2,0,-3)$, about the point $(2,-2,-2)$, is given by :-
(1) $-8 \hat{\mathrm{i}}-4 \hat{j}-7 \hat{k}$
(2) $-4 \hat{i}-\hat{j}-8 \hat{k}$
(3) $-7 \hat{\mathrm{i}}-8 \hat{\mathrm{j}}-4 \hat{\mathrm{k}}$
(4) $-7 \hat{i}-4 \hat{j}-8 \hat{k}$

Ans. (4)
28. A block of mass mis placed on a smooth inclined wedge ABC of inclination θ as shown in the figure. The wedge is given an acceleration 'a' towards the right. The relation between a and θ for the block to remain stationary on the wedge is :-

(1) $a=\frac{g}{\operatorname{cosec} \theta}$
(2) $a=\frac{g}{\sin \theta}$
(3) $a=g \cos \theta$
(4) $\mathrm{a}=\mathrm{g} \tan \theta$

Ans. (4)
29. A toy car with charge q moves on a frictionless horizontal plane surface under the influence of a uniform electric field $\overrightarrow{\mathrm{E}}$. Due to the force $\mathrm{q} \overrightarrow{\mathrm{E}}$, its velocity increases from 0 to $6 \mathrm{~m} / \mathrm{s}$ in one second duration. At that instant the direction of the field is reversed. The car continues to move for two more seconds under the influence of this filed. The average velocity and the average speed of the toy car between 0 to 3 seconds are respectively :-
(1) $2 \mathrm{~m} / \mathrm{s}, 4 \mathrm{~m} / \mathrm{s}$
(2) $1 \mathrm{~m} / \mathrm{s}, 3 \mathrm{~m} / \mathrm{s}$
(3) $1 \mathrm{~m} / \mathrm{s}, 3.5 \mathrm{~m} / \mathrm{s}$
(4) $1.5 \mathrm{~m} / 5,3 \mathrm{~m} / \mathrm{s}$

Ans. (2)
30. A student measured the diameter of a small steel ball using a screw gauge of least count 0.001 cm . The main scale reading is 5 mm and zero of circular scale division coincides with 25 divisions above the reference level. If screw gauge has a zero error of -0.004 cm , the correct diameter of the ball is :-
(1) 0.521 cm
(2) 0.525 cm
(3) 0.053 cm
(4) 0.529 cm

Ans. (4)
31. Unpolarised light is incident from air on a plane surface of a material of refractive index ' μ '. At a particular angle of incidence ' i ', it is found that the reflected and refracted rays are perpendicular to each other. Which of thefollowing options is correct for this situation?
(1) Reflected light is polarised with its electric vector parallel to the plane of incidence
(2) Reflected light is polarised with its electric vector perpendicular to the plane of incidence
(3) $i=\sin ^{-1}\left(\frac{1}{\mu}\right)$
(4) $\mathrm{i}=\tan ^{-1}\left(\frac{1}{\mu}\right)$

Ans. (2)
32. In Young's double slit experiment the separationd between the slits is 2 mm , the wavelength λ of the light used is $5896 \AA$ and distance D between the screen and slits is 100 cm . It is found that the angular width of thefringes is 0.20°. To increase the fringe angular width to 0.21° (with same λ and D) the separation between the slits needs to be changed to :-
(1) 1.8 mm
(2) 1.9 mm
(3) 2.1 mm
(4) 1.7 mm

Ans. (2)
33. An astronomical refracting telescope will havelarge angular magnification and high angular resolution, when it has an objective lens of :-
(1) small focal length and large diameter
(2) large focal length and small diameter
(3) large focal length and large diameter
(4) small focal length and small diameter

Ans. (3)
34. The volume (V) of a monatomic gas varies with its temperature (T), as shown in the graph. The ratio of work done by the gas, to the heat absorbed by it, whenitundergoes a change from state A to state B, is :-

(1) $\frac{2}{5}$
(2) $\frac{2}{3}$
(3) $\frac{1}{3}$
(4) $\frac{2}{7}$

Ans. (1)
35. The fundamental frequency in an open organ pipe is equal to the third harmonic of aclosed organ pipe. If the length of the closed organ pipe is 20 cm , the length of the open organ pipe is :-
(1) 13.2 cm
(2) 8 cm
(3) 12.5 cm
(4) 16 cm

Ans. (1)
36. The efficiency of an ideal heat engine working between the freezing point and boiling point of water, is :-
(1) 26.8%
(2) 20%
(3) 6.25%
(4) 12.5%

Ans. (1)
37. At what temperature will the rms speed of oxygen molecules become just sufficient for escaping from the Earth's atmosphere?
(Given :
Mass of oxygen molecule $(\mathrm{m})=2.76 \times 10 \quad{ }^{-26} \mathrm{~kg}$ Boltzmann's constant $\mathrm{k} \quad \mathrm{B}=1.38 \times 10^{-23} \mathrm{JK}^{-1}$) :-
(1) $2.508 \times 10{ }^{4} \mathrm{~K}$
(2) $8.360 \times 10{ }^{4} \mathrm{~K}$
(3) $5.016 \times 10^{4} \mathrm{~K}$
(4) $1.254 \times 10{ }^{4} \mathrm{~K}$

Ans. (2)
38. A metallic rod of mass per unit length $0.5 \mathrm{~kg} \mathrm{~m}^{-1}$ is lying horizontally on asmooth inclined plane which makes an angle of 30° with the horizontal. The rod is not allowed to slide down by flowing a current through it when a magnetic field of induction 0.25 T is acting on it in the vertical direction. The current flowing in the rod to keep is stationary is
(1) 7.14 A
(2) 5.98 A
(3) 14.76 A
(4) 11.32 A

Ans. (4)
39. An inductor 20 mH , a capacitor $100 \mu \mathrm{~F}$ and a resistor 50Ω are connected in series across a source of emf, $V=10 \sin 314 \mathrm{t}$. The power loss in the circuit is
(1) 0.79 W
(2) 0.43 W
(3) 2.74 W
(4) 1.13 W

Ans. (1)
40. A thin diamagnetic rod is placed vertically between the poles of an electromagnet. When the current in the electromagnet is switched on, then the diamagnetic rod is pushed up, out of the horizontal magnetic field. Hence the rod gains gravitational potential energy. The work required to do this comes from
(1) the current source
(2) the magnetic field
(3) the lattice structure of the material of the rod
(4) the induced electric field due to the changing magnetic field
Ans. (1)
41. Current sensitivity of a moving coil galvanometer is $5 \mathrm{div} / \mathrm{mA}$ and its voltage sensitivity (angular deflection per unit voltage applied) is $20 \mathrm{div} N$. The resistance of the galvanometer is
(1) 40Ω
(2) 25Ω
(3) 250Ω
(4) 500Ω

Ans. (3)
42. If the mass of the Sun were ten times smaller and the universal gravitational constant were ten time larger in magnitude, which of the following is not correct?
(1) Raindrops will fall faster
(2) Walking on the ground would become more difficult
(3) Time period of a simple pendulum on the Earth would decrease
(4) ' g ' on the Earth will not change

Ans. (4)
43. A solid sphere is in rolling motion. In rolling motion abody possesses translational kinetic energy ($\mathrm{K} \quad \mathrm{t}$) as well as rotational kinetic energy $\left(\mathrm{K}_{\mathrm{r}}\right)$ simultaneously.
The ratio $\mathrm{K}_{\mathrm{t}}:\left(\mathrm{K}_{\mathrm{t}}+\mathrm{K}_{\mathrm{r}}\right)$ for the sphere is
(1) $7: 10$
(2) $5: 7$
(3) $10: 7$
(4) $2: 5$

Ans. (2)
44. The kinetic energies of a planet inan elliptical orbit about the Sun, at positions A, B and C are $\mathrm{K} \quad \mathrm{A}, \mathrm{K}_{\mathrm{B}}$ and K_{C} respectively. $A C$ is the major axis and $S B$ is perpendicular to AC at the position of the Sun S as shown in the figure. Then

(1) $\mathrm{K}_{\mathrm{A}}<\mathrm{K}_{\mathrm{B}}<\mathrm{K}_{\mathrm{C}}$
(2) $K_{A}>K_{B}>K_{C}$
(3) $K_{B}<K_{A}<K_{C}$
(4) $K_{B}>K_{A}>K_{C}$

Ans. (2)
45. A solid sphere is rotating freely about its symmetry axis in free space. The radius of the sphere is increased keeping its mass same. Which of the following physical quantities would remain constant for the sphere?
(1) Angular velocity
(2) Moment of inertia
(3) Rotational kinetic energy
(4) Angular momentum

Ans. (4)

CHEMISTRY

46. A mixture of 2.3 g formic acid and 4.5 g oxalic acid is treated with conc. $\mathrm{H}_{2} \mathrm{SO}_{4}$. Theevolved gaseous mixture is passed through KOH pellets. Weight (in g) of the remaining product at STP will be
(1) 1.4
(2) 3.0
(3) 2.8
(4) 4.4

Ans. (3)
47. Nitration of aniline in strong acidic medium also gives m-nitroaniline because
(1) In spite of substituents nitro groupalways goes to only m-position.
(2) In electrophilic substitution reactions amino group is meta directive.
(3) In absence of substituents nitro group always goes to m-position
(4) In acidic (strong) medium aniline is present as aniliniumion.
Ans. (4)
48. Which of the following oxides is most acidic in nature?
(1) MgO
(2) BeO
(3) BaO
(4) CaO

Ans. (2)
49. The difference between amylose and amylopectin is
(1) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6$ α-linkage
(2) Amylose have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6$ β-linkage
(3) Amylopectin have $1 \rightarrow 4 \alpha$-linkage and $1 \rightarrow 6$ β-linkage
(4) Amylose is made up of glucose and galactose

Ans. (1)
50. Regarding cross-linked or network polymers, which of the following statements is incomect?
(1) They contain covalent bonds between various linear polymer chains.
(2) They are formed from bi-and tri-functional monomers.
(3) Examples are bakelite and melamine.
(4) They contain strong covalent bonds in their polymer chains.
Ans. (2 \& 4)
51. In the reaction

(1) dichloromethyl cation $\left(\stackrel{\oplus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
(2) formyl cation $(\stackrel{\oplus}{\mathrm{C}} \mathrm{HO})$
(3) dichloromethyl anion $\left(\stackrel{\ominus}{\mathrm{C}} \mathrm{HCl}_{2}\right)$
(4) dichlorocarbene (: CCl_{2})

Ans. (4)
52. Carboxylic acid have higher boiling points than aldehydes, ketones and even alcohols of comparable molecular mass. It is due to their
(1) formation of intramolecular H -bonding
(2) formation of carboxylate ion
(3) more extensive association of carboxylic acid via van der Waals force of attraction
(4) formation of intermolecular H -bonding.

Ans. (4)

53. Compound $\mathrm{A}, \mathrm{C}{ }_{8} \mathrm{H}_{10} \mathrm{O}$, is found to react with NaOI (produced by reacting Y with NaOH) and yields a yellow precipitate with characteristic smell.
A and Y are respectively
(1) $\mathrm{H}_{3} \mathrm{C}$

(2)

(3)

(4)

Ans. (3)
54. The correct difference between first- and second-order reaction is that
(1) the rate of afirst-order reaction does not depend on reactant concentration; the rate of a secondorder reaction does depend on reactant concentrations.
(2) the half-life of a first-order reaction does not depend on $[\mathrm{A}]_{0}$; the half-life of a second-order reaction does depend on $[\mathrm{A}] \quad 0$
(3) a first-order reaction can be catalyzed; a second-order reaction cannot be catalyzed.
(4) the rate of a first-order reaction does depend on reactant concentrations; the rate of a second-order reaction does not depend on reactant concentrations
Ans. (2)
55. Among $\mathrm{CaH}_{2}, \mathrm{BeH}_{2}, \mathrm{BaH}_{2}$, the order of ionic character is
(1) $\mathrm{BeH}_{2}<\mathrm{CaH}_{2}<\mathrm{BaH}_{2}$
(2) $\mathrm{CaH}_{2}<\mathrm{BeH}_{2}<\mathrm{BaH}_{2}$
(3) $\mathrm{BeH}_{2}<\mathrm{BaH}_{2}<\mathrm{CaH}_{2}$
(4) $\mathrm{BaH}_{2}<\mathrm{BeH}_{2}<\mathrm{CaH}_{2}$

Ans. (1)
56. Consider the change in oxidation state of Bromine corresponding to different emf values as shown in the diagram below:

$$
\begin{aligned}
& \mathrm{BrO}_{4}^{-} \\
& \\
& \mathrm{Br}^{-} \stackrel{1.82 \mathrm{~V}}{\longrightarrow} \mathrm{BrO}_{3}^{-} \xrightarrow{1.0652 \mathrm{~V}} \mathrm{Br}_{2} \stackrel{4}{\longleftrightarrow} \mathrm{HBrO} \\
&
\end{aligned}
$$

Then the species undergoing disproportionation is:-
(1) BrO_{3}^{-}
(2) BrO_{4}^{-}
(3) Br_{2}
(4) HBrO

Ans. (4)
57. In which case is the number of molecules of water maximum?
(1) 18 mL of water
(2) 0.18 g of water
(3) 0.00224 L of water vapours at 1 atm and 273 K
(4) $10^{-3} \mathrm{~mol}$ of water

Ans. (1)
58. Magnesium reacts with an element (X) to form an ionic compound. If the ground state electronic configuration of (X) is $1 s^{2} 2 s^{2} 2 p^{3}$, the simplest formula for this compound is
(1) $\mathrm{Mg}_{2} \mathrm{X}_{3}$
(2) MgX_{2}
(3) $\mathrm{Mg}_{2} \mathrm{X}$
(4) $\mathrm{Mg}_{3} \mathrm{X}_{2}$

Ans. (4)
59. Iron exhibits bcc structure at room temperature. Above $900^{\circ} \mathrm{C}$, it transforms to fcc structure. The ratio of density of iron at roomtemperature to that at $900^{\circ} \mathrm{C}$ (assuming molar mass and atomic radii of iron remains constant with temperature) is
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
(2) $\frac{4 \sqrt{3}}{3 \sqrt{2}}$
(3) $\frac{3 \sqrt{3}}{4 \sqrt{2}}$
(4) $\frac{1}{2}$

Ans. (3)
60. Which one is a wrong statement?
(1) Total orbital angular momentum of electron in 's' orbital is equal to zero
(2) An orbital is designated by three quantum numbers while an electron in an atom is designated by four quantum numbers.
(3) The electronic configuration of N atom is

(4) The value of $\mathrm{m}_{\mathrm{f}} \mathrm{d} \mathrm{z}^{2}$ is zero

Ans. (3)
61. Consider the following species:

$$
\mathrm{CN}^{+}, \mathrm{CN}^{-}, \mathrm{NO} \text { and } \mathrm{CN}
$$

Which one of these will have thehighest bond order?
(1) NO
(2) CN^{-}
(3) CN^{+}
(4) CN

Ans. (2)
62 Which of the following statements is not true for halogens?
(1) All form monobasic oxyacids.
(2) All are oxidizing agents.
(3) All but fluorine show positive oxidation states.
(4) Chlorine has the highest electron-gain enthalpy.

Ans. (Bonus)

63. Which one of the following elements is unable to form MF ${ }_{6}^{3-}$ ion?
(1) Ga
(2) AI
(3) B
(4) In

Ans. (3)
64. In the structure of ClF_{3}, the number of lone pairs of electrons on central atom ' Cl ' is
(1) one
(2) two
(3) four
(4) three

Ans. (2)
65. Considering Ellingham diagram, which of the following metals can be used to reduce alumina ?
(1) Fe
(2) Zn
(3) Mg
(4) Cu

Ans. (3)
66. The correct order of atomic radii in group 13 elements is
(1) $\mathrm{B}<\mathrm{Al}<\mathrm{In}<\mathrm{Ga}<\mathrm{Tl}$
(2) $\mathrm{B}<\mathrm{Al}<\mathrm{Ga}<\mathrm{In}<\mathrm{Tl}$
(3) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{Tl}<\mathrm{In}$
(4) $\mathrm{B}<\mathrm{Ga}<\mathrm{Al}<\mathrm{In}<\mathrm{Tl}$

Ans. (4)
67. The correct order of N -compounds in its decreasing order of oxidation states is
(1) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{N}_{2}, \mathrm{NH}_{4} \mathrm{Cl}$
(2) $\mathrm{HNO}_{3}, \mathrm{NO}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}$
(3) $\mathrm{HNO}_{3}, \mathrm{NH}_{4} \mathrm{Cl}, \mathrm{NO}, \mathrm{N}_{2}$
(4) $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{N}_{2}, \mathrm{NO}, \mathrm{HNO}_{3}$

Ans. (1)
68. On which of the following properties does coagulating power of an ion depend?
(1) The magnitude of the charge on the alone
(2) Size of the ion alone
(3) Both magnitude and sign of the charge the ion
(4) The sign of charge on the ion alone

Ans. (3)
69. Following solutions were prepared by mixing different volumes of NaOH and HCl of different concentrations:
a. $60 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{HCl}}}{10}+40 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
b. $55 \mathrm{~mL} \frac{\mathrm{M}_{10}}{10} \mathrm{HCl}+45 \mathrm{~mL} \frac{\mathrm{M}}{10} \mathrm{NaOH}$
c. $75 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{HCl}}}{5}+25 \mathrm{~mL} \frac{\mathrm{M}}{5} \mathrm{NaOH}$
d. $100 \mathrm{~mL} \frac{\mathrm{M}_{\mathrm{HCl}}}{10}+100 \mathrm{~mL} \frac{\mathrm{M}}{10} \frac{\mathrm{NaOH}}{10}$
pH of which one of them will be equal to 1 ?
(1) b
(2) a
(3) d
(4) c

Ans. (4)
70. The solubility of BaSO_{4} in water $2.42 \times 10 \quad{ }^{3} \mathrm{gL}^{-1}$ at 298 K . The value of solubility product ($\mathrm{K} \quad \mathrm{sp}$) will be
(Given molar mass of $\mathrm{BaSO}_{4}=233 \mathrm{~g} \mathrm{~mol}^{-1}$)
(1) $1.08 \times 10^{-10} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(2) $1.08 \times 10^{-12} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(3) $1.08 \times 10^{-14} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$
(4) $1.08 \times 10^{-8} \mathrm{~mol}^{2} \mathrm{~L}^{-2}$

Ans. (1)
71. Givenvander Waal s constant for $\mathrm{NH} \quad 3, \mathrm{H}_{2}$ and CO_{2} are respectively 4.17, $0.244,1.36$ and 3.59 , which one of the following gases is most easily liquefied?
(1) NH_{3}
(2) H_{2}
(3) O_{2}
(4) CO_{2}

Ans. (1)
72. The compound A on treatment with Nagives B, and with PCl_{5} gives C . B and C react together to give diethyl ether. A, B and C are in the order
(1) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$
(2) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}$
(3) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}, \mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$
(4) $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{ONa}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{Cl}$

Ans. (4)
73. Hydrocarbon (A) reacts with bromine by substitution to form an alkyl bromide which by Wurtz reaction is converted to gaseous hydrocarbon containing less than four carbon atoms. (A) is
(1) $\mathrm{CH} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$
(3) $\mathrm{CH}_{3}-\mathrm{CH}_{3}$
(4) CH_{4}

Ans. (4)
74. The compound $\mathrm{C}{ }_{7} \mathrm{H}_{8}$ undergoes the following reactions :

The product ' C ' is
(1) m-bromotoluene
(2) o-bromotoluene
(3) 3-bromo-2,4,6-trichlorotoluene
(4) p -bromotoluene

Ans. (1)
75. Which oxide of nitrogen is not a common pollutant introduced into the atmosphere both due to natural and human activity?
(1) $\mathrm{N}_{2} \mathrm{O}_{5}$
(2) NO_{2}
(3) $\mathrm{N}_{2} \mathrm{O}$
(4) NO

Ans. (1)
76. For the redox reaction
$\mathrm{MnO}_{4}^{-}+\mathrm{C}_{2} \mathrm{O}_{4}^{2-}+\mathrm{H}^{+} \longrightarrow \mathrm{Mn}^{2+}+\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O}$ the correct coefficients of the reactants for the balanced equation are

	MnO_{4}^{-}	$\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$	H^{+}
(1)	16	5	2
(2) 2	5	16	
(3) 2	16	5	
(4) 5	16	2	

Ans. (2)
77. Which one of the following conditions will favour maximumformation of the product in the reaction,
$\mathrm{A}_{2}(\mathrm{~g})+\mathrm{B}_{2}(\mathrm{~g}) \rightleftharpoons \mathrm{X}_{2}(\mathrm{~g}) \Delta_{\mathrm{r}} \mathrm{H}=-\mathrm{X} \mathrm{kJ}$?
(1) Low temperature and high pressure
(2) Low temperature and low pressure
(3) High temperature and high pressure
(4) High temperature and low pressure

Ans. (1)
78. The correction factor 'a' to the ideal gas equation corresponds to
(1) density of the gas molecules
(2) volume of the gas molecules
(3) electric field present between the gas molecules
(4) forces of attraction between the gas molecules

Ans. (4)
79. Wheninitial concentration of the reactant is doubled, the half-life period of a zero order reaction
(1) is halved
(2) is doubled
(3) is tripled
(4) remains unchanged

Ans. (2)
80. The bond dissociation energies of $X \quad{ }_{2}, Y_{2}$ and $X Y$ are in the ratio of $1: 0.5: 1 . \quad \Delta$ Hfor the formation of XY is $-200 \mathrm{~kJ} \mathrm{~mol}^{-1}$. The bond dissociation energy of X_{2} will be
(1) $200 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(2) $100 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(3) $800 \mathrm{~kJ} \mathrm{~mol}^{-1}$
(4) $400 \mathrm{~kJ} \mathrm{~mol}^{-1}$

Ans. (3)
81. Identify the major products P, Q and R in the following sequence of reaction :

P
Q
R
(1)

(2)

(3)

(4)
 $\mathrm{CH}_{3}-\mathrm{CO}-\mathrm{CH}_{3}$

Ans. (4)
82. Which of the following compounds can form a zwitterion?
(1) Aniline
(2) Acetanilide
(3) Benzoic acid
(4) Glycine

Ans. (4)
83. The type of isomerism shown by the complex $\left[\mathrm{CoCl}_{2}(\mathrm{en})_{2}\right]$ is
(1) Geometrical isomerism
(2) Coordination isomerism
(3) Ionization isomerism
(4) Linkage isomerism

Ans. (1)
84. Which one of the following ions exhibits $\mathrm{d}-\mathrm{d}$ transition and paramagnetism as well ?
(1) CrO_{4}^{2-}
(2) $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$
(3) MnO_{4}^{-}
(4) MnO_{4}^{2-}

Ans. (4)
85. The geometry and magnetic behaviour of the complex $\left[\mathrm{Ni}(\mathrm{CO})_{4}\right]$ are
(1) square planar geometry and diamagnetic
(2) tetrahedral geometry and diamagnetic
(3) square planar geometry and paramagnetic
(4) tetrahedral geometry and paramagnetic

Ans. (2)
86. Iron carbonyl, $\mathrm{Fe}(\mathrm{CO})_{5}$ is
(1) tetranuclear
(2) mononuclear
(3) trinuclear
(4) dinuclear

Ans. (2)
87. Match the metal ions given in Column I with the spin magnetic moments of the ions given in Column II and assign the correct code :

ColumnI
 Column II

a. Co^{3+}
i. $\sqrt{8}$ B.M.
b. Cr^{3+}
ii. $\sqrt{35}$ B.M.
c. Fe^{3+}
iii. $\sqrt{3}$ B.M.
d. Ni^{2+}
iv. $\sqrt{24}$ B.M.
v. $\sqrt{15}$ B.M.

	a	b	c	d
(1)	iv	v	ii	i
(2)	i	ii	iii	iv
(3)	iv	i	ii	iii
(4)	iii	v	i	ii

Ans. (1)
88. Which of the following is correct with respect to -I effect of the substituents? $(\mathrm{R}=$ alkyl)
(1) $-\mathrm{NH}_{2}<-\mathrm{OR}<-\mathrm{F}$
(2) $-\mathrm{NR}_{2}<-\mathrm{OR}<-\mathrm{F}$
(3) $-\mathrm{NH}_{2}>-\mathrm{OR}>-\mathrm{F}$
(4) $-\mathrm{NR}_{2}>-\mathrm{OR}>-\mathrm{F}$

Ans. (2)
89. Which of the following carbocations is expected to be most stable?
(1)

(2)

(3)

(4)

Ans. (3)
90. Which of the following molecules represents the order of hybridisation $\mathrm{sp}^{2}, \mathrm{sp}^{2}, \mathrm{sp}$, sp from left to right atoms?
(1) $\mathrm{HC} \equiv \mathrm{C}-\mathrm{C} \equiv \mathrm{CH}$
(2) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{C} \equiv \mathrm{CH}$
(3) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}=\mathrm{CH}_{2}$
(4) $\mathrm{CH}_{3}-\mathrm{CH}=\mathrm{CH}-\mathrm{CH} 3$

Ans. (2)

BIOLOGY

91. The experimental proof for semiconservative replication of DNA was first shown in a
(1) Fungus
(2) Bacterium
(3) Plant
(4) Virus

Ans. (2)
92 Select the correct statement:
(1) Franklin Stahl coined the term "linkage".
(2) Punnett square was developed by a British scientist.
(3) Spliceosomes take part in translation.
(4) Transduction was discovered by S. Altman.

Ans. (2)
93. Offsets are produced by
(1) Meiotic divisions
(2) Mitotic divisions
(3) Parthenocarpy
(4) Parthenogenesis

Ans. (2)
94. Which of the following pairs in wrongly matched ?
(1) Starch synthesis in pea
: Multiplealleles
(2) ABO blood grouping : Co-dominance
(3) XO type sex determination: Grasshopper
(4) T.H. Morgan
: Linkage

Ans. (1)
95. Which of the following flowers only once in its life-time?
(1) Bamboo species
(2) Jackfruit
(3) Mango
(4) Papaya

Ans. (1)
96. Select the correct match :
(1) Alec Jeffreys - Streptococcus pneumoniae
(2) Alfred Hershey and - TMV Martha Chase
(3) Matthew Meselson - Pisum sativum and F. Stahl
(4) Francois Jacob and - Lac operon Jacques Monod
Ans. (4)
97. Which of the following has proved helpful in preserving pollen as fossils ?
(1) Pollenkitt
(2) Cellulosic intine
(3) Oil content
(4) Sporopollenin

Ans. (4)
98. Stomatal movement is not affected by
(1) Temperature
(2) Light
(3) O_{2} concentration
(4) CO_{2} concentration

Ans. (3)
99. The stage during which separation of the paired homologous chromosomes begins is
(1) Pachytene
(2) Diplotene
(3) Diakinesis
(4) Zygotene

Ans. (2)
100. The two functional groups characteristic of sugars are
(1) hydroxyl and methyl
(2) carbonyl and methyl
(3) carbonyl and phosphate
(4) carbonyl and hydroxyl

Ans. (4)
101. Which of the following is not a product of light reaction of photosynthesis?
(1) ATP
(2) NADH
(3) NADPH
(4) Oxygen

Ans. (2)
102. Stomata in grass leaf are
(1) Dumb-bell shaped
(2) Kidney shaped
(3) Rectangular
(4) Barrel shaped

Ans. (1)
103. Which among the following is not a prokaryote?
(1) Saccharomyces
(2) Mycobacterium
(3) Nostoc
(4) Oscillatoria

Ans. (1)
104. Which of the following is true for nucleolus?
(1) Larger nucleoli are present in dividing cells.
(2) It is a membrane-bound structure.
(3) It takes part in spindle formation.
(4) It is a site for active ribosomal RNA synthesis.

Ans. (4)
105. The Golgi complex participates in
(1) Fatty acid breakdown
(2) Formation of secretory vesicles
(3) Respiration in bacteria
(4) Activation of amino acid

Ans. (2)
106. In stratosphere, which of the following element acts as a catalyst in degradation of ozone a release of molecular oxygen?
(1) Carbon
(2) Cl
(3) Fe
(4) Oxygen

Ans. (2)
107. Which of the following is a secondary pollutant
(1) CO
(2) CO_{2}
(3) SO_{2}
(4) O_{3}

Ans. (4)
108. Niche is
(1) all the biological factors in the organism environment
(2) the physical space where an organism live
(3) the range of temperature that the organism needs to live
(4) the functional role played by the organism where it lives
Ans. (4)
109. Natality refers to
(1) Death rate
(2) Birth rate
(3) Number of individuals leaving the habitat
(4) Number of individuals entering a habitat

Ans. (2)
110. What type of ecological pyramid would obtained with the following data?
Secondary consumer : 120 g
Primary consumer : 60 g
Primary producer: 10 g
(1) Inverted pyramid of biomass
(2) Pyramid of energy
(3) Upright pyramid of numbers
(4) Upright pyramid of biomass

Ans. (1)
111. World Ozone Day is celebrated on
(1) $5^{\text {th }}$ June
(2) $21{ }^{\text {st }}$ April
(3) $16^{\text {th }}$ September
(4) $22{ }^{\text {nd }}$ April

Ans. (3)
112. Which of the following is commonly used as avector for introducing a DNA fragment in human lymphocytes?
(1) Retrovirus
(2) Ti plasmid
(3) λ phage
(4) pBR 322

Ans. (1)
113. In India, the organisation responsible for assessing the safety of introducing genetically modified organisms for public use is
(1) Indian Council of Medical Research (ICMR)
(2) Council for Scientific and Industrial Research (CSIR)
(3) Research Committee on Genetic Manipulation (RCGM)
(4) Genetic Engineering Appraisal Committee (GEAC)
Ans. (4)
114. A 'new variety of rice was patented by a foreign company though such varieties have been present in India for a long time. This is related to
(1) Co-667
(2) Sharbati Sonora
(3) Lerma Rojo
(4) Basmati

Ans. (4)
115. Select the comect Match:

(1) Ribozyme	- Nucleic acid
(2) $\mathrm{F}_{2} \times$ Recessive parent - Dihybrid cross	
(3) T.H. Morgan	- Transduction
(4) G. Mendel	- Transformation

Ans. (1)
116. Use of bioresources by multinational companies and organisations without authorisation from the concerned country and its peoople is called
(1) Bio-infringement
(2) Biopiracy
(3) Biodegradation
(4) Bioexploitation

Ans. (2)
117. The correct order of steps in Polymerase Chain Reaction (PCR) is
(1) Extension, Denaturation, Annealing
(2) Annealing, Extension, Denaturation
(3) Denaturation, Extension, Annealing
(4) Denaturation, Annealing, Extension

Ans. (4)
118. Secondary xylem and phloem in dicot stem are produced by
(1) Apical meristems
(2) Vascular cambium
(3) Phellogen
(4) Axillary meristems

Ans. (2)
119. Pneumatophores occur in
(1) Halophytes
(2) Free-floating hydrophytes
(3) Carnivorous plants
(4) Submerged hydrophytes

Ans. (1)
120. Sweet potato is a modified
(1) Stem
(2) Adventitious root
(3) Tap root
(4) Rhizome

Ans. (2)
121. Which of the following statement is comect ?
(1) Ovules are not enclosed by ovary wall in gymnosperms
(2) Selaginella is heterosporous, while Salvinia is homosporous
(3) Horsetails are gymnosperms
(4) Stems are usually unbranched in both Cycas and Cedrus
Ans. (1)
122. Select the wrong statement:
(1) Cell wall is present in members of Fungi and Plantae
(2) Mushrooms belong to Basidiomycetes
(3) Pseudopodia are locomotory and feeding structures in Sporozoans
(4) Mitochondria are the powerhouse of the cell in all kingdoms except Monera
Ans. (3)
123. Casparian strips occur in
(1) Epidermis
(2) Pericycle
(3) Cortex
(4) Endodermis

Ans. (4)
124. Plants having little or no secondary growth are
(1) Grasses
(2) Deciduous angiosperms
(3) Conifers
(4) Cycads

Ans. (1)
125. Which one is wrongly matched ?
(1) Uniflagellate gametes - Polysiphonia
(2) Biflagellate zoospores - Brown algae
(3) Gemma cups - Marchantia
(4) Unicellular organism - Chlorella

Ans. (1)
126. Match the items given in Column I with those in Column II and select the comect option given below :-

Column-I
(a) Herbarium
(b) Key
(c) Museum
(d) Catalogue

	a	b	c	d
(1)	i	iv	iii	ii
(2)	iii	ii	i	iv
(3)	ii	iv	iii	i
(4)	iii	iv	i	ii

Ans. (4)
127. Winged pollen grains are present in
(1) Mustard
(2) Cycas
(3) Mango
(4) Pinus

Ans. (4)
128. After karyogamy followed by meiosis, spores are produced exogenously in
(1) Neurospora
(2) Alternaria
(3) Agaricus
(4) Saccharomyces

Ans. (3)
129. What is the role of NAD ${ }^{+}$in cellular respiration?
(1) It functions as an enzymes
(2) It functions as an electron carrier
(3) It is a nucleotide source for ATP synthesis
(4) It is the final electron acceptor for anaerobic respiration
Ans. (2)
130. Oxygen is not produced during photosynthesis by
(1) Green sulphur bacteria
(2) Nostoc
(3) Cycas
(4) Chara

Ans. (1)
131. Pollen grains can be stored for several years in liquid nitrogen having a temperature of
(1) $-120^{\circ} \mathrm{C}$
(2) $-80^{\circ} \mathrm{C}$
(3) $-196^{\circ} \mathrm{C}$
(4) $-160^{\circ} \mathrm{C}$

Ans. (3)
132. In which of the following forms is iron absorbed by plants?
(1) Ferric
(2) Ferrous
(3) Free element
(4) Both ferric and ferrous

Ans. (1)
133. Double fertilization is
(1) Fusion of two male gametes of a pollen tube with two different eggs
(2) Fusion of one male gamete with two polar nuclei
(3) Fusion of two male gametes with one egg
(4) Syngamy and triple fusion

Ans. (4)
134. Which of the following elements is responsible for maintaining turgor in cells?
(1) Magnesium
(2) Sodium
(3) Potassium
(4) Calcium

Ans. (3)
135. Which one of the following plants shows a very close relationship with a species of moth, where none of the two can complete its lifecycle without the other?
(1) Hydrilla
(2) Yucca
(3) Banana
(4) Viola

Ans. (2)
136. Hormones secreted by the placenta to maintain pregnancy are
(1) hCG, hPL, progestogens, prolactin
(2) hCG, hPL, estrogens, relaxin, oxytocin
(3) hCG, hPL, progestogens, estrogens
(4) hCG, progestogens, estrogens, glucocorticoids

Ans. (3)
137. The contraceptive 'SAHELI'
(1) blocks estrogen receptors in the uterus, preventing eggs from getting implanted.
(2) increases the concentration of estrogen and prevents ovulation in females.
(3) is an IUD.
(4) is a post-coital contraceptive.

Ans. (1)
138. The difference between spermiogenesis and spermiation is
(1) In spermiogenesis spermatids are formed, while in spermiation spermatozoa are formed.
(2) In spermiogenesis spermatozoa are formed, while in spermiation spermatids are formed.
(3) In spermiogenesis spermatozoa from Sertoli cells arereleased into the cavity of seminiferous tubules, while in spermiation spermatozoa are formed.
(4) In spermiogenesis spermatozoa are formed, while in spermiation spermatozoa are released fromSertoli cells into the cavity of seminiferous tubules.
Ans. (4)
139. The amnion of mammalian embryo is derived from
(1) ectoderm and mesoderm
(2) endoderm and mesoderm
(3) mesoderm and trophoblast
(4) ectoderm and endoderm

Ans. (1)
140. In a growing population of a country
(1) pre-reproductive individuals are more than the reproductive individuals.
(1) reproductive individual s are less than the postreproductive individuals.
(3) reproductive and pre-reproductive individuals are equal in number.
(4) pre-reproductive individuals are less than the reproductive individuals.
Ans. (1)
141. All of the following are included in 'Ex-situ conservation' except
(1) Wildlife safari parks
(2) Sacred groves
(3) Botanical gardens
(4) Seed banks

Ans. (2)
142. Which part of poppy plant is used to obtain the drug. "Smack" ?
(1) Flowers
(2) Latex
(3) Roots
(4) Leaves

Ans. (2)
143. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Eutrophication
b. Sanitary landfill
c. Snow blindness
. UV-B radiation
ii. Deforestation
d. Jhum cultivation
iii. Nutrient enrichment
iv. Waste disposal

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
(1)	ii	i	iii	iv
(2)	i	iii	iv	ii
(3)	iii	iv	i	ii
(4)	i	ii	iv	iii

Ans. (3)
144. Which one of the following population interactions is widely used in medical science for the production of antibiotics?
(1) Commensalism
(2) Mutualism
(3) Parasitism
(4) Amensalism

Ans. (4)
145. Which of the following events does not occur in rough endoplasmic reticulum?
(1) Protein folding
(2) Protein glycosylation
(3) Cleavage of signal peptide
(4) Phospholipid synthesis

Ans. (4)
146. Which of these statements is incomect ?
(1) Enzymes of TCA cycle are present in mitochondrial matrix.
(2) Glycolysis occurs in cytosol.
(3) Glycolysis operates as long as it is supplied with NAD that can pick up hydrogen atoms.
(4) Oxidative phosphorylation takes place in outer mitochondrial membrane.
Ans. (4)
147. Many ribosomes may associate with a single mRNA to form multiple copies of a polypeptide simultaneously. Such strings of ribosomes are termed as
(1) Polysome
(2) Polyhedral bodies
(3) Plastidome
(4) Nucleosome

Ans. (1)
148. Select the incorrect match:
(1) Lampbrush - Diplotene bivalents chromosomes
(2) Allosomes - Sex chromosomes
(3) Submetacentric - L-shaped chromososmes chromosomes
(4) Polytene - Oocytes of amphibians chromosomes
Ans. (4)
149. Nissl bodies are mainly composed of
(1) Proteins and lipids
(2) DNA and RNA
(3) Nucleic acids and SER
(4) Free ribosomes and RER

Ans. (4)
150. Which of the following terms describe human dentition?
(1) Thecodont, Diphyodont, Homodont
(2) Thecodont, Diphyodont, Heterodont
(3) Pleurodont, Monophyodont, Homodont
(4) Pleurodont, Diphyodont, Heterodont

Ans. (2)
151. Match the items given in Column I with those in Column II and select the correct option given below:

Column I

a. Glycosuria
b. Gout
c. Renal calculi
d. Glomerular nephritis

Column II

i. Accumulation of uric acid in joints
ii. Mass of crystallised sal ts within the kidney
iii. Inflammation in glomeruli
iv. Presence of glucose in urine

	\mathbf{a}	\mathbf{b}	\mathbf{c}	\mathbf{d}
(1)	iii	ii	iv	i
(2)	i	ii	iii	iv
(3)	ii	iii	i	iv
(4)	iv	i	ii	iii

Ans. (4)
152. Match the items given in Column I with those Column II and select the correct option given below:

Column I
(Function)
a. Ultrafiltration
b. Concentration
of urine
c. Transport of urine
d. Storage of urine

Column II
(Part of Excretory System)
i. Henle's loop
ii. Ureter
iii. Urinary bladder
iv. Malpighian corpuscle
v. Proximal convoluted tubule

	a	b	c	d
(1)	iv	v	ii	iii
(2)	iv	i	ii	iii
(3)	v	iv	i	ii
(4)	v	iv	i	iii

Ans. (2)
153. The similarity of bone structure in the forelimbs of many vertebrates is an example of
(1) Homology
(2) Analogy
(3) Convergent evolution (
(4) Adaptive radiation

Ans. (1)
154. Which of the following is not at autoimmune disease?
(1) Psoriasis
(2) Rheumatoid arthritis
(3) Alzheimer's disease
(4) Vitiligo

Ans. (3)
155. Among the following sets of examples for divergent evolution, select the incorrect option :
(1) Forelimbs of man, bat and cheetah
(2) Heart of bat, man and cheetah
(3) Brain of bat, man and cheetah
(4) Eye of octopus, bat and man

Ans. (4)
156. Which of the following characteristics represent 'Inheritance of blood groups' in humans?
a. Dominance
b. Co-dominance
c. Multiple alleles
d. Incomplete dominance
e. Polygenic inheritance
(1) b, c and e
(2) a, b and c
(3) b, d and e
(4) a, c and e

Ans. (1)
157. Inwhich disease does mosquito transmitted pathogen cause chronic inflammation of lymphatic vessels?
(1) Elephantiasis
(2) Ascariasis
(3) Ringworm disease
(4) Amoebiasis

Ans. (1)
158. Conversion of milk to curd improves its nutritional value by increasing the amount of
(1) Vitamin D
(2) Vitamin A
(3) Vitamin B_{12}
(4) Vitamin E

Ans. (3)
159. Which of the following is an amino acid derived hormone?
(1) Epinephrine
(2) Ecdysone
(3) Estradiol
(4) Estriol

Ans. (1)
160. Which of the following structures or regions is incorrectly paired with its function?
(1) Medulla oblongata : controls respiration and cardiovascular reflexes.
(2) Limbic system: consists of fibretracts that interconnect different regions of brain; controls movement.
(3) Hypothalamus production of releasing hormones and regulation of temperature, hunger and thirst.
(4) Corpus callosum : band of fibers connecting left and right cerebral hemispheres.
Ans. (2)
161. Which of the following hormones can play a significant role in osteoporesis?
(1) Aldosterone and Prolactin
(2) Progesterone and Aldosterone
(3) Estrogen and Parathyroid hormone
(4) Parathyroid hormone and Prolactin

Ans. (3)
162. The transparent lens in the human eye is held in its place by
(1) ligaments attached to the ciliary body
(2) ligaments attached to the iris
(3) smooth muscles attached to the iris
(4) smooth muscles attached to the ciliary body

Ans. (1)
163. Which of the following animals does not undergo metamorphosis?
(1) Earthworm
(2) Tunicate
(3) Moth
(4) Starfish

Ans. (1)
164. Identify the vertebrate group of animals characterized by crop and gizzard in its digestive sytstem.
(1) Amphibia
(2) Reptilia
(3) Aves
(4) Osteichthyes

Ans. (3)
165. Which of the following organisms are known as chief producers in the oceans?
(1) Dinoflagellates
(2) Diatoms
(3) Cyanobacteria
(4) Euglenoids

Ans. (2)
166. Which one of these animals is not a homeotherm?
(1) Macropus
(2) Chelone
(3) Camelus
(4) Psittacula

Ans. (2)
167. Ciliates differ from all other protozoans in
(1) using flagella for locomotion
(2) having a contractile vacuole for removing excess water
(3) using pseudopodia for capturing prey
(4) having two types of nuclei

Ans. (4)
168. Which of the following features is used to identify a male cockroach from a female cockroach ?
(1) Presence of a boat shaped sternum on the 9
th abdominal segment
(2) Presence of caudal styles
(3) Forewings with darker tegmina
(4) Presence of anal cerci

Ans. (2)
169. Which of thefollowing options correctly represents the lung conditions in asthma and emphysema, respectively?
(1) Inflammation of bronchioles; Decreased respiratory surface
(2) Increased number of bronchioles; Increased respiratory surface
(3) Increased respiratory surface; Inflammation of bronchioles
(4) Decreased respiratory surface; Inflammation of bronchioles
Ans. (1)
170. Match the items given in Column I with those in Column II and select the correct option given below:

Column I
a. Tricuspid valve
b. Bicuspid valve
c. Semilunar valve

$\quad \mathbf{a}$	b	c
(1) iii	i	ii
(2) i	iii	ii
(3) i	ii	iii
(4) ii	i	iii

Ans. (1)
171. Match the items given Column I with those in Column II and select the correct option given below:
(1) iii ii
(2) iii i
(3) i iv
(4) iv
iii
i. Between left atrium and left ventricle
ii. Between right ventricle and pulmonary artery
iii. Between right atrium and right ventricle

c

ii
ii
iii
iii

Column I

a. Tidal volume
b. Inspiratory Reserve volume
c. Expiratory Reserve volume
d. Residual volume
(1) ${ }_{\text {iii }}^{\mathbf{a}} \quad \mathbf{b}$

Column II
i. $2500-3000 \mathrm{~mL}$
ii. $1100-1200 \mathrm{~mL}$
iii. $500-550 \mathrm{~mL}$
iv. $1000-1100 \mathrm{~mL}$
$\mathbf{c} \quad \mathbf{d}$
(2)
172. AGGTATCGCAT is a sequence from the coding strand of a gene. What will be the corresponding sequence of the transcribed mRNA?
(1) AGGUAUCGCAU
(2) UGGTUTCGCAT
(3) ACCUAUGCGAU
(4) UCCAUAGCGUA

Ans. (1)
173. According to Hugo de Vries, the mechanism of evolution is :-
(1) Multiple step mutations
(2) Saltation
(3) Phenotypic variations
(4) Minor mutations

Ans. (2)
174. Match the items given in Column I with those in Column II and select the correct option given below :-

Column I
a. Proliferative Phase
b. Secretory Phase
c. Menstruation

	\mathbf{a}	\mathbf{b}	\mathbf{c}
(1)	iii	ii	i
(2)	i	iii	ii
(3)	ii	iii	i
(4)	iii	i	ii

Ans. (3)
175. A woman has an X-linked condition on one of her X chromosomes. This chromosome can be inherited by :-
(1) Only daughters
(2) Only sons
(3) Only grandchildren
(4) Both sons and daughters

Ans. (4)
176. All of the following are part of an operon except :-
(1) an operator
(2) structural genes
(3) an enhancer
(4) a promoter

Ans. (3)
177. Which of the following gastric cells indirectly help in erythropoiesis?
(1) Chief cells
(2) Mucous cells
(3) Goblet cells
(4) Parietal cells

Ans. (4)
178. Match the items given in Column I with those in Column II and select the correct option given below :-

Column I
a. Fibrinogen
b. Globulin
c. Albumin

	\mathbf{a}	\mathbf{b}
(1)	iii	ii
(2)	i	ii
(3)	i	iii
(4)	ii	iii

Column II

i. Osmotic balance
ii. Blood clotting
iii. Defence mechanism
c
i
iii
ii
i

Ans. (4)
179. Calcium is important in skeletal muscle contraction because it :-
(1) binds to troponin to remove the masking of active sites on actin for myosin.
(2) activates the myosin ATPase by binding to it.
(3) detaches the myosin head from the actin filament.
(4) prevents the formation of bonds between the myosin cross bridges and the actin filament.
Ans. (1)
180. Which of the following is an occupational respiratory disorder? :
(1) Anthracis
(2) Silicosis
(3) Botulism
(4) Emphysema

Ans. (2)

