# DR ACADEMY DO RIGHT FOR GENUINE EDUCATION 

\#42, 100ft Road, Kammagondanahalli, Jalahalli West, Bengaluru - 15.<br>Ph : 9008030463 / 9008030896 / 9945157847

## NPDT EXAMINATION - 2020 (CODE - D5)

DATE :- 13-09-2020
TIME : 02.00 PM TO 05.00 PM

1. Flippers of Penguins and Dolphins are examples of
1) Adaptive radiation
2) Convergent evolution
3) Industrial melanism
4) Natural selection

Ans. 2
2. Name the plant growth regulator which upon spraying on sugarcane crop, increases the length of stem, thus increasing the yield of sugarcane crop

1) Cytokinin
2) Gibberellin
3) Ethylene
4) Abscisic acid

Ans. 2
3. Secondary metabolites such as nicotine, strychnine and caffeine are produced by plants for their

1) Nutritive value
2) Growth response
3) Defence action
4) Effect on reproduction

Ans. 3
4. The body of the ovule is fused within the funicle at

1) Hilum
2) Nucellus
3) Micropyle
4) Chalaza

Ans. 1
5. Match the following columns and select the correct option.

| Column-I | Column-II |
| :--- | :--- |
| a) Clostridium <br> butylicum | i) Cyclosporin-A |
| b) Trichoderma <br> polysporum | ii) Butyric Acid |
| c) Monascus <br> purpureus | iii) Citric Acid |
| d) Aspergillus niger | iv) Blood cholesterol <br> lowering agent |

1) a-iii, b-iv, c-ii, d-i
2) a-ii, b-i, c-iv, d-iii
3) a-i, b-ii, c-iv, d-iii
4) a-iv, b-iii, c-ii, d-I

Ans. 2

The processes responsible for facilitating loss of water in liquid form from the tip of grass blades at night and early morning is

1) Transpiration
2) Root pressure
3) Imbibition
4) Plasmolysis

Ans. 2
7. Which of the following is not an inhibitory substance governing seed dormancy ?

1) Gibberellic acid
2) Abscisic acid
3) Phenolic acid
4) Para-ascorbic acid

Ans. 1
8. Identify the incorrect statement.

1) Heart wood does not conduct water but gives mechanical support
2) Sapwood is involved in conduction of water and minerals from root to leaf.
3) Sapwood is the innermost secondary xylem and is lighter in colour
4) Due to deposition of tannins, resins, oils etc., heart wood is dark in colour.
Ans. 3
9. Choose the correct pair from the following
1) Ligases - Join the two DNA molecules
2) Polymerases - Break the DNA into fragments
3) Nucleases - Separate the two strands of DNA
4) Exonucleases - Make cuts at specific positions within DNA
Ans. 1
10. By which method was a new breed 'Hisardale' of sheep formed by using Bikaneri ewes and Marino rams ?
1) Out crossing
2) Mutational breeding
3) Cross breeding
4) Inbreeding

Ans. 3
11. Dissolution of the synaptonemal complex occurs during

1) Pachytene
2) Zygotene
3) Diplotene
4) Leptotene

Ans. 3
12. Match the following diseases with the causative organism and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Typhoid | i) Wuchereria |
| b) Pneumonia | ii) Plamodium |
| c) Filariasis | iii) Salmonella |
| d) Malaria | iv) Hoemophilus |

1) a-i, b-iii, c-ii, d-iv
2) a-iii, b-iv, c-i, d-ii
3) a-ii, b-i, c-iii, d-iv
4) a-iv, b-i, c-ii, d-iii

Ans. 2
13. According to Robert May, the global species diversity is about

1) 1.5 million
2) 20 million
3) 50 million
4) 7 million

Ans. 4
14. In light reaction, plastoquinone facilitates the transfer of electrons from

1) PS-II to Cytb ${ }_{6}$ f complex
2) Cytb ${ }_{6}$ f complex to PS-I
3) PS-I to NADP ${ }^{+}$
4) PS-I to ATP synthase

Ans. 1
15. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Pituitary gland | i) Grave's disease |
| b) Thyroid gland | ii) Diabetes mellitus |
| c) Adrenal gland | iii) <br> insipidus |
| d) Pancreas | iv) Addison's disease |

1) a-iv, b-iii, c-i, d-ii
2) a-iii, b-ii, c-i, d-iv
3) a-iii, b-i, c-iv, d-ii
4) a-ii, b-i, c-iv, d-iii

Ans. 3
16. Which of the following statements are true for the phylum-Chordata?
a) In Urochordata notochord extends from head to tail and it is present throughout their
life
b) In Vertebrata notochord is present during the embryonic period only
c) Central nervous system is dorsal and hollow
d) Chordata is divided into 3 subphyla : Hemichordata. Tunicats and Cephalochordata

1) d and c
2) c and a
3) a and b
4) b and c

Ans. 4
17. Select the option including all sexually transmitted diseases

1) Gonorrhoea, Syphilis, Genital herpes
2) Gonorrhoea, Malaria, Genital herpes
3) AIDS, Malaria, Filaria
4) Cancer, AIDS, Syphilis

Ans. 1
18. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Organ of Corti | i) Connects middle <br> ear and pharynx |
| b) Cochlea | ii) Coiled part of the <br> labyrinth |
| c) Eustachian tube | iii) Attached to the <br> oval window |
| d) Stapes | iv) Located on the <br> basilar membrane |

1) a-ii, b-iii, c-i, d-iv
2) a-iii, b-i, c-iv, d-ii
3) a-iv, b-ii, c-i, d-iii
4) a-i, b-ii, c-iv, d-iii

Ans. 3
19. Cuboidal epithelium with brush border of microvilli is found in

1) lining of intestine
2) ducts of salivary glands
3) proximal convoluted tubule of nephron
4) Eustachian tube

Ans. 3
20. Identify the wrong statement with reference to transport of oxygen

1) Binding of oxygen with haemoglobin is mainly related to partial pressure of $\mathrm{O}_{2}$
2) Partial pressure of $\mathrm{CO}_{2}$ can interfere with $\mathrm{O}_{2}$ binding with haemoglobin
3) Higher $\mathrm{H}^{+}$conc. In alveoli favours the formation of oxyhaemoglobin
4) Low $\mathrm{pCO}_{2}$ in alveoli favours the formation of oxyhaemoglobin
Ans. 3
21. Goblet cells of alimentary canal are modified from
1) Squamous epithelial cells
2) Columnar epithelial cells
3) Chondrocytes
4) Compound epithelial cells

Ans. 2
22. Identify the wrong statement with regard to Restriction Enzymes

1) Each restriction enzyme functions by inspecting the length of a DNA sequence
2) They cut the strand of DNA at palindromic sites
3) They are useful in genetic engineering
4) Sticky ends can be joined by using DNA ligase
Ans. 4
23. Experimental verification of the chromosomal theory of inheritance was done by
1) Mendel
2) Sutton
3) Boveri
4) Morgan

Ans. 4
24. Identify the correct statement with reference to human digestive system

1) Ileum opens into small intestine
2) Serosa is the innermost layer of the alimentary canal
3) Ileum is a highly coiled part
4) Vermiform appendix arises from duodenum Ans. 3
25. Identify the wrong statement with reference to the gene 'I' that controls ABO blood groups
1) The gene (I) has three alleles
2) A person will have only two of the three alleles
3) When $I^{A}$ and $I^{B}$ are present together, they express same type of sugar
4) Allele 'I' does not produce any sugar

Ans. 3
26. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Floating Ribs | i) Located between <br> second and seventh <br> ribs |
| b) Acromion | ii) Head of the <br> Humerus |
| c) Scapula | iii) Clavicle |
| d) Glenoid cavity | iv) Do not connect <br> with the sternum |

1) a-ii, b-iv, c-i, d-iii
2) a-i, b-iii, c-ii, d-iv
3) a-iii, b-ii, c-iv, d-i
4) a-iv, b-iii, c-i, d-ii

Ans. 4
27. The products(s) of reaction catalysed by nitrogenase in root nodules of leguminous plants is/are

1) Ammonia alone
2) Nitrate alone
3) Ammonia and oxygen
4) Ammonia and hydrogen

Ans. 4
28. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Greegarious, <br> polyphagous pest | i) Asterias |
| b) Adult with radial <br> symmetry and larva <br> with <br> symmetry bilateral | ii) Scorpion |
| c) Book lungs | iii) Ctenoplana |
| d) Bioluminescence | iv) Locusta |

1) a-i, b-iii, c-ii, d-iv
2) a-iv, b-i, c-ii, d-iii
3) a-iii, b-ii, c-i, d-iv
4) a-ii, b-i, c-iii, d-iv

Ans. 2
29. Snow-blindness in Antarctic region is due to

1) Freezing of fluids in the eye by low temperature
2) Inflammation of cornea due to high does of UV-B radiation
3) High reflection of light from snow
4) Damage to retina caused by infra-red rays

Ans. 2
30. In relation to Gross primary productivity and Net primary productivity of an ecosystem, which one of the following statements is correct ?

1) Gross primary productivity is always less than net primary productivity
2) Gross primary productivity is always more than net primary productivity
3) Gross primary productivity and Net primary productivity are one and same
4) There is no relationship between Gross primary productivity and Net primary productivity
Ans. 2
31. Select the correct statement
1) Glucocorticoids stimulate gluconeogenesis
2) Glucagon is associated with hypoerglycemia
3) Insulin acts on pancreatic cells and adipocytes
4) Insulin is associated with hyperglycemia

Ans. 1
32. Select the correct events that occur during inspiration
a) Contraction of diaphragm
b) Contraction of external inter-costal muscles
c) Pulmonary volume decreases
d) Intra pulmonary pressure increases

1) a and b
2) c and d
3) a, b and d
4) only d

Ans. 1
33. Match the following concerning essential elements and their functions in plants :

| a) Iron | i) Photolysis of water |
| :--- | :--- |
| b) Zinc | ii) Pollen germination |
| c) Boron | iii) Required for <br> chlorophyll <br> biosynthesis |
| d) Manganese | iv) IAA biosynthesis |

Select the correct option

1) a-ii, b-i, c-iv, d-iii
2) a-iv, c-iii, c-ii, d-i
3) a-iii, b-iv, c-ii, d-i
4) a-iv, b-i, c-ii, d-iii

Ans. 3
34. In which of the following techniques, the embryos are transferred to assist those females who cannot conceive ?

1) ZIFT and IUT
2) GIFT and ZIFT
3) ICSI and ZIFT
4) GIFT and ICSI

Ans. 1
35. The infectious stage of Plasmodium that enters the human body is

1) Trophozoites
2) Sporozoites
3) Female gametocytes
4) Male gametocytes

Ans. 2
36. Which of the following hormone levels will cause release of ovum (ovulation) from the graffian follicle ?

1) High concentration of Estrogen
2) High concentration of Progesterone
3) Low concentration of LG
4) Low concentration of FSH

Ans. 2
37. Presence of which of the following conditions in urine are indicative of Diabetes Mellitus ?

1) Uremia and Ketonuria
2) Uremia and Renal Calculi
3) Ketonuria and Glycosuria
4) Renal calculi and Hyperglycaemia

Ans. 3
38. Name the enzyme that facilitates opening of DNA helix during transcription

1) DNA ligase
2) DNA helicase
3) DNA polymerase
4) RNA polymerase

Ans. 4
39. Match the trophic levels with their correct species examples in grassland ecosystem

| a) Fourth trophic <br> level | i) Crow |
| :--- | :--- |
| b) Second trophic <br> level | ii) Vulture |
| c) First trophic level | iii) Rabbit |
| d) Third trophic level | iv) Grass |

Select the correct option

1) a-ii, b-iii, c-iv, d-i
2) a-iii, b-ii, c-i, d-iv
3) a-iv, b-iii, c-ii, d-i
4) a-i, b-ii, c-iii, d-iv

Ans. 1
40. Match the following

| a) Inhibitor of <br> catalytic activity | i) Ricin |
| :--- | :--- |
| b) Possess peptide <br> bonds | ii) Malonate |
| c) Cell wall material <br> in fungi | iii) Chitin |
| d) Secondary <br> metabolite | iv) Collagen |

Select the correct option

1) a-ii, b-iv, c-iii, d-i
2) a-iii, b-i, c-iv, d-ii
3) a-iii, b-iv, c-i, d-ii
4) a-ii, b-iii, c-i, d-iv

Ans. 1
41. The first phase of translation is

1) Binding of mRNA to ribosome
2) Recognition of DNA molecule
3) Aminocylation of tRNA
4) Recognition of an anti-codon

Ans. 3
42. Identify the substances having glycosidic bond and peptide bond, respectively in their structure:

1) Chitin, cholesterol
2) Glycerol, trypsin
3) Cellulose, lecithin
4) Inulin, Insulin

Ans. 4
43. Which of the following statements about inclusion bodies is incorrect ?

1) They are not bound by any membrane
2) These are involved in ingestion of food particles
3) They lie free in the cytoplasm
4) These represent reserve material in cytoplasm
Ans. 2
44. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Bt cotton | i) Gene therapy |
| b) Adenosine <br> deaminase <br> deficiency | ii) Cellular defence |
| c) RNAi | iii) Detection of HIV <br> infection |
| d) PCR | iv) Bacillus <br> thuringiensis |

Select the correct option

1) a-iv, b-i, c-ii, d-iii
2) a-iii, b-ii, c-i, d-iv
3) a-ii, b-iii, c-iv, d-i
4) a-i, b-ii, c-iii, d-iv

Ans. 1
45. Identify the correct statement with regard to $\mathrm{G}_{1}$ phase (Gap 1) of interphase

1) DNA synthesis or replication takes place
2) Reorganisation of all cell components takes place
3) Cell is metabolically active, grows but does not replicate its DNA
4) Nuclear Division takes place

Ans. 3
46. Which of the following is put into Anaerobic sludge digester for further sewage treatment?

1) Primary sludge
2) Gloating debris
3) Effluents of primary treatment
4) Activate sludge

Ans. 4
47. Which of the following statements is correct ?

1) Adenine pairs with thymine through two Hbonds
2) Adenine pairs with thymine through one Hbond
3) Adenine pairs with thymine through three H-bonds
4) Adenine does not pair with thymine

Ans. 1
48. The sequence that controls the copy number of the linked DNA in the vector, is termed

1) Selectable marker
2) Ori site
3) Palindromic sequence
4) Recognition site

Ans. 2
49. Select the correct match

1) Haemophilia - Y linked
2) Phenylketonuria - Autosomal dominant trait
3) Sickle cell anaemia - Autosomal recessive trait, chromosome-11
4) Thalassemia - X linked

Ans. 3
50. Which of the following is not an attribute of a population?

1) Sex ratio
2) Natality
3) Mortality
4) Species interaction

Ans. 4
51. Strobili or cones are found in

1) Salvinia
2) Pteris
3) Marchantia
4) Equisetum

Ans. 4
52. Which is the important site of formation of glycoproteins and glycolipids in eukaryotic cells ?

1) Endoplasmic reticulum
2) Peroxisomes
3) Golgi bodies
4) Polysomes

Ans. 3
53. Which of the following is correct about viroids?

1) They have RNA with protein coat
2) They have free RNA without protein coat
3) They have DNA with protein coat
4) They have free DNA without proteins coat

Ans. 2
54. The process of growth is maximum during

1) Log phase
2) Lag phase
3) Senescence
4) Dormancy

Ans. 1
55. Which of the following regions of the globe exhibits highest species diversity ?

1) Western Ghats of India
2) Madagascar
3) Himalayas
4) Amazon forests

Ans.
56. The number of substrate level phosphorylations in one turn of citric acid cycle is

1) Zero
2) One
3) Two
4) Three

Ans. 2
57. Meiotic division of the secondary oocyte is completed

1) Prior to ovulation
2) At the time of copulation
3) After zygote formation
4) At the time of fusion of a sperm with an ovum
Ans. 4
58. Which of the following pairs is of unicellular algae ?
1) Laminaria and Sargassum
2) Gelidium and Gracilaria
3) Anabaena and Volvox
4) Chlorella and Spirulina

Ans. 4
59. The QRS complex in a standard ECG represents

1) Repolarisation of auricles
2) Depolarisation of auricles
3) Depolarisation of ventricles
4) Repolarisation of ventricles

Ans. 3
60. Some dividing cells exit the cell cycle and enter vegetative inactive stage. This is called quiescent stage ( $\mathrm{G}_{0}$ ). This process occurs at the end of

1) M phase
2) $G_{1}$ phase
3) S phase
4) $G_{2}$ phase

Ans. 2
61. Match the following with respect to meiosis

| a) Zygotene | i) Terminalization |
| :--- | :--- |
| b) Pachytene | ii) Chiasmata |
| c) Dipltene | iii) Crossing over |
| d) Diakinesis | iv) Synapsis |

Select the correct option from the following

1) a-iii, b-iv, c-i, d-ii
2) a-iv, b-iii, c-ii, d-i
3) a-i, b-ii, c-iv, d-iii
4) a-ii, b-iv, c-iii, d-i

Ans. 2
62. Which one of the following is the most abundant protein in the animals ?

1) Haemoglobin
2) Collagen
3) Lactin
4) Insulin

Ans. 2
63. The ovary is half inferior in

1) Brinjal
2) Mustard
3) Sunflower
4) Plum

Ans. 4
64. Ray florets have

1) Inferior ovary
2) Superior ovary
3) Hypogynous ovary
4) Half inferior ovary

Ans. 1
65. The oxygenation activity of RuBisCo enzyme is photorespiration leads to the formation of

1) 2 molecules of 3-C compound
2) 1 molecules of 3-C compound
3) 1 molecules of 6-C compound
4) 1 molecule of 4-C compound and 1 molecule of $2-\mathrm{C}$ compound
Ans. 2
66. The plant parts which consists of two generations one within the other
a) Pollen grains inside the anther
b) Germinated pollen grain with two male gametes
c) Seed inside the fruit
d) Embryo sac inside the ovule
1) a only
2) a, b and c
3) c and d
4) a and d
67. Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Eosinophils | i) Immune response |
| b) Basophils | ii) Phagocytosis |
| c) Neutrophils | iii) <br> histaminase, <br> destructive enzymes |
| d) Lymphocytes | iv) Release granules <br> containing <br> histamine |

Ans. 1
68. Bilaterally symmetrical and acoelomate animals

1) Ctenophora
2) Plathyhelminthes
3) Aschelminthes
4) Annelida

## Ans.

69. Identify the basic amino acid from the following
1) Tyrosine
2) Glutamic Acid
3) Lysine
4) Valine

Ans.

Match the following columns and select the correct option

| Column-I | Column-II |
| :--- | :--- |
| a) Placenta | i) Androgens |
| b) Zona pellucida | ii) Human Chorionic <br> Gonadotropin (hCG) |
| c) Bulbo-urethral <br> glands | iii) Layer of the ovum <br> d) Leydig cellsiv) Lubrication of the <br> Penis |

1) a-iv, b-iii, c-i, d-ii
2) a-i, b-iv, c-ii, d-iii
3) a-iii, b-ii, c-iv, d-i
4) a-ii, b-iii, c-iv, d-i

Ans. 4
71. Bt cotton variety that was developed by the introduction of toxin gene of Bacillus thuringiensis $(\mathrm{Bt})$ is resistant to

1) Insect pests
2) Fungal diseases
3) Plant nematodes
4) Insect predators

Ans. 1

Ans. 4

NEET - 2020 (CODE-E5)
72. Match the following columns and select the correct option.

| Column-I | Column-II |
| :--- | :--- |
| a) 6-15 pairs of gills <br> lists | i) Trygon |
| b) Heterocercal <br> caudal fin | ii) Cyclostomes |
| c) Air Bladder | iii) Chondrichthyes |
| d) Poison sting | iv) Osteichthyes |

1) a-ii, b-iii, c-iv, d-i
2) a-iii, b-iv, c-i, d-ii
3) a-iv, b-ii, c-iii, d-i
4) a-i, b-iv, c-iii, d-ii

Ans. 1
73. Floridean starch has structure similar to

1) Starch and cellulose
2) Amylopectin and glycogen
3) Mannitol and algin
4) Laminarin and cellulose

Ans. 2
74. Which of the following statements is not correct?

1) In man insulin is synthesised as a proinsulin
2) The proinsulin has an extra peptide called C-peptide
3) The functional insulin has A and B chains linked together by hydrogen bonds
4) Genetically engineered insulin is produced in E -Coli.
Ans. 3
75. If the head of cockroach is removed, it may live for few days because
1) the supra-oesophageal ganglia of the cockroach are situated in ventral part of abdomen
2) the cockroach does not have nervous system
3) the head holds a small proportion of a nervous while the rest is situated along the ventral part of its body
4) the head holds a $1 / 3^{\text {rd }}$ of a nervous system while the rest is situated along the dorsal part of its body
Ans. 3
76. The enzyme enterokinase helps in conversion of
1) proteins into polypetides
2) trypsinogen into trypsin
3) caseinogen into casein
4) pepsinogen into pepsin

Ans. 2
77. The transverse section of a plant shows following anatomical features
a) Large number of scattered vascular bundles surrounded by bundle sheath
b) Large conspicuous parenchymatous ground tissue
c) Vascular bundles conjoint and closed
d) Phloem parenchyma absent

Identify the category of plant and its part

1) Monocotyledonous stem
2) Monocotyledonous root
3) Dicotyledonous stem
4) Dicotyledonous root

Ans. 1
78. In water hyacinth and water lily, pollination takes place by

1) Insects or wind
2) Water currents only
3) Wind water
4) Insects and water

Ans. 1
79. IN gel electrophoresis, separated DNA fragments can be visualized with the help of

1) Acetocrmine in bright blue light
2) Ethidium bromide in UV radiation
3) Acetocarmine in UV radiation
4) Ethidium bromide in infrared radiation

Ans. 2
80. How many true breeding pea plant varieties did Mendel select as pairs, which were similar except in one character with contrasting traits?

1) 4
2) 2
3) 14
4) 8

Ans. 3
81. Which of the following refer to correct examples of organisms which have evolved due to changes environment brought about by anthropogenic action?

1) Darwin's Finches of Galapagos islands
2) Herbicide resistant weeds
3) Drug resistant eukaryotes
4) Man-created breeds of domesticated animals like dogs
Ans. 3
82. Match the organism with its use in biotechnology

| a) Bacillus <br> thuringiensis | i) Cloning vector |
| :--- | :--- |
| b) Thermus <br> aquaticus | ii) Construction of <br> first rDNA molecule |
| c) Agrobacterium <br> tumefaciens | iii) DNA polymerase |
| d) Salmonella <br> typhimurium | iv) Cry proteins |

Select the correct option from the following

1) a-ii, b-iv, c-iii, d-i
2) a-iv, b-iii, c-i, d-ii
3) a-iii, b-ii, c-iv, d-i
4) a-iii, b-iv, c-i, d-ii

Ans. 2
83. From his experiments, S.L. Miller produced amino acids by mixing the following in a closed flask

1) $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $800^{\circ} \mathrm{C}$
2) $\mathrm{CH}_{3}, \mathrm{H}_{2}, \mathrm{NH}_{4}$ and water vapour at $800^{\circ} \mathrm{C}$
3) $\mathrm{CH}_{4}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $600^{\circ} \mathrm{C}$
4) $\mathrm{CH}_{3}, \mathrm{H}_{2}, \mathrm{NH}_{3}$ and water vapour at $600^{\circ} \mathrm{C}$

Ans. 1
84. Embryological support for evolution was disapproved by

1) Karl Ernst von Baer
2) Alfred Wallace
3) Charles Darwin
4) Oparin

Ans. 1
85. If the distance between two consecutive base Paris is 0.34 nm and the total number of base pairs of DNA double helix in a typical mammalian cells $6.6 \times 10^{9} \mathrm{bp}$, then the length of the DNA is approximately

1) 2.0 meters
2) 2.5 meters
3) 2.2 meters
4) 2.7 meters

Ans. 3
86. Identify the wrong statement with reference to immunity

1) When exposed to antigen (living or dead) antibodies are produced in the host's body. It is called "Active immunity"
2)When ready-made antibodies are directly given, it is called "Passive immunity"
3)Active immunity is quick and gives full response
2) Foetus receives some antibodies from mother, it is an example for passive immunity
Ans. 3
87. The specific palindromic sequence which is recognized by EcoRI is
1) 5' - GAATTC - 3'

3' - CTTAAG - 5'
2) $5^{\prime}$ - GGAACC $-3^{\prime}$

3' - CCTTGG - 5'
3) $5^{\prime}$ - CTTAAG - $3^{\prime}$

3' - GAATTC - $5^{\prime}$
4) $5^{\prime}$-GGATTC - $3^{\prime}$

3' - CTAGG - 5'
Ans. 1
88. Which of the following would help in prevention diuresis?

1) More water reabsorption due to under secretion of ADH
2) Reabsorption of $\mathrm{Na}^{+}$and water from renal tubules due to aldosterone
3) Atrial natriuretic factor causes vasoconstriction
4) Decrease in secretion of renin by JG cells

Ans. 2
89. Montreal protocol was signed in 1987 for control of

1) Transport of Genetically modified organisms from one country to another
2) Emission of ozone depleting substances
3) Release of Green House gases
4) Disposal of e-wastes

Ans. 2
90. The roots that originate from the base of the stem are

1) Fibrous roots
2) Primary roots
3) Prop roots
4) Lateral roots

Ans. 1
91. The solids which have the negative temperature coefficient of resistance are

1) Metals
2) Insulators only
3) Semiconductors only
4) Insulators and semiconductors

Ans. 4
Sol. Insulator and semiconductors
92. A charged particle having drift velocity of $7.5 \times 10^{-4} \mathrm{~m} \mathrm{~s}^{-1}$ in an electric field of $3 \times 10^{-10} \mathrm{Vm}^{-}$ ${ }^{1}$ has a mobility in $\mathrm{m}^{2} \mathrm{~V}^{-1} \mathrm{~s}^{-1}$ of

1) $2.25 \times 10^{15}$
2) $2.5 \times 10^{6}$
3) $2.5 \times 10^{-6}$
4) $2.25 \times 10^{-15}$

Ans. 2
So1. $\mu=\frac{V_{d}}{E}=\frac{7.5 \times 10^{-4}}{3 \times 10^{-10}}=2.5 \times 10^{6}$
93. For transistor action, which of the following statements is correct?

1) Base, emitter and collector regions should have same doping concentrations
2) Base, emitter and collector regions should have same size
3) Both emitter junction as well as the collector junction are forward biased
4) The base region must be very thin and lightly doped
Ans. 4
Sol. The base region must be very thin and lightly doped
94. In a guitar, two strings A and B made of same material are slightly out of tune and produce beats of frequency 6 Hz . When tension in $B$ is slightly decreased, the beat frequency increases to 7 Hz . If the frequency of B will be
1) 523 Hz
2) 524 Hz
3) 536 Hz
4) 537 Hz

Ans. 2
Sol. $\mathrm{n}_{\mathrm{A}}-\mathrm{n}_{\mathrm{B}}=6$
As tension is decreased, frequency of ' $B$ ' decreases and hence no. of beats increases.
i.e., $\mathrm{n}_{\mathrm{A}}>\mathrm{n}_{\mathrm{B}}$
$\therefore \mathrm{n}_{\mathrm{A}}-\mathrm{n}_{\mathrm{B}}=6$.
$\mathrm{n}_{\mathrm{B}}=\mathrm{n}_{\mathrm{A}}-6$
$=530-6=524$
95. A wire of length $L$, area of cross section $A$ is hanging from a fixed support. The length of the wire changes to $L_{1}$ when mass $M$ is suspended from its free end. The expression of Young's modulus is

1) $\frac{\mathrm{MgL}_{1}}{\mathrm{AL}}$
2) $\frac{\operatorname{Mg}\left(L_{1}-L\right)}{A L}$
3) $\frac{\mathrm{MgL}}{\mathrm{AL}_{1}}$
4) $\frac{M g L}{A\left(L_{1}-L\right)}$

Ans. 4
Sol. $Y=\frac{F \times L}{A \times e}$
$\mathrm{Y}=\frac{\mathrm{mg} \times \mathrm{L}}{\mathrm{A}\left(\mathrm{L}_{1}-\mathrm{L}\right)}$
96. Light with an average flux of $20 \mathrm{~W} / \mathrm{cm}^{2}$ falls on a non-reflecting surface at normal incidence having surface area $20 \mathrm{~cm}^{2}$. The energy received by the surface during tine span of 1 minute is

1) $10 \times 10^{3} \mathrm{~J}$
2) $12 \times 10^{3} \mathrm{~J}$
3) $24 \times 10^{3} \mathrm{~J}$
4) $48 \times 10^{3} \mathrm{~J}$

Ans. 3
Sol. $\mathrm{I}=\frac{\mathrm{E}}{\mathrm{At}} \Rightarrow \mathrm{E}=\mathrm{IA} \times \mathrm{t}$
$=2 \times 10^{5} \times 2 \times 10^{-3} \times 60$
$=24 \times 10^{3} \mathrm{~J}$
97. The phase difference between displacement and acceleration of a particle in a simple harmonic motion is

1) $\pi \mathrm{rad}$
2) $\frac{3 \pi}{2} \mathrm{rad}$
3) $\frac{\pi}{2} \mathrm{rad}$
4) Zero

Ans. 1
Sol. $\mathrm{a}=-\omega^{2} \mathrm{y} \Rightarrow \mathrm{a} \alpha-\mathrm{y}$
$\therefore \pi \mathrm{rad}$
98. A capillary tube of radius $r$ is immersed water and rises in it to a height $h$. The mass of the water in the capillary is 5 g . Another capillary tube of radius $2 r$ is immersed in water. The mass of water that will rise in this tube is

1) 2.5 g
2) 5.0 g
3) 10.0 g
4) 20.0 g

Ans. 3
Sol. Weight balances the tension
$\mathrm{mg}=2 \pi \mathrm{r} \mathrm{T} \cos \theta$
$\therefore \mathrm{m} \propto \mathrm{r}$
$\frac{\mathrm{m}_{1}}{\mathrm{~m}_{2}}=\frac{\mathrm{r}_{1}}{\mathrm{r}_{2}} \Rightarrow \frac{5}{\mathrm{~m}_{2}}=\frac{1}{2} \Rightarrow \mathrm{~m}_{2}=10 \mathrm{~g}$
99. A series LCR is connected to an ac voltage source. When $L$ is removed from the circuit, the phase difference between current and voltage is $\frac{\pi}{3}$. If instead $C$ is removed from the circuit, the phase differ3ence is again $\frac{\pi}{3}$ between current and voltage. The power factor of the circuit is

1) Zero
2) 0.5
3) 1.0
4) -1.0

Ans. 3
Sol. Circuit is under resonance

$$
\therefore \cos \phi=1
$$

100. In Young's double slit experiment, if the separation between coherent source is halved and the distance of the screen form the coherent source is doubled, then the fringe width becomes
1) Double
2) Half
3) Four times
4) One-fourth

Ans. 3
Sol. $\beta=\frac{\lambda D}{d}$
$\beta \propto \frac{D}{d}$
$\frac{\beta}{\beta^{\prime}}=\frac{\mathrm{D}}{\mathrm{D}^{\prime}} \times \frac{\mathrm{d}^{\prime}}{\mathrm{d}}=\frac{1}{2} \times \frac{1}{2}$
$\beta^{\prime}=4 \beta$
101. Dimensions of stress are

1) $\left[\mathrm{MLT}^{-2}\right]$
2) $\left[\mathrm{ML}^{2} \mathrm{~T}^{-2}\right]$
3) $\left[\mathrm{ML}^{0} \mathrm{~T}^{-2}\right]$ 4) $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$

Ans. 4
Sol. $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$
102. Find the torque about the origin when a force of $3 \hat{\mathrm{j}} \mathrm{N}$ acts on a particle whose position vector is $2 \hat{\mathrm{k}} \mathrm{m}$

1) $6 \hat{i} \mathrm{Nm}$
2) $6 \hat{j} \mathrm{Nm}$
3) $-6 \hat{\mathrm{i}} \mathrm{Nm}$
4) $6 \hat{\mathrm{k}} \mathrm{Nm}$

Ans. 3
So1. $\vec{\tau}=\vec{r} \times \vec{F}$
$=2 \hat{k} \times 3 \hat{j}$
$=-6 \hat{i} \mathrm{~N}-\mathrm{m}$
103. Which of the following graph represents the variation of resistivity ( $\rho$ ) with temperature ( T ) for copper?
1)

2)

3)

4)


Ans. 3
Sol. The variation of resistivity of copper with temperature is parabolic in nature.
104. A cylinder contains hydrogen gas at pressure of 249 kPa and temperature $27^{\circ} \mathrm{C}$.
Its density is: $\left(\mathrm{R}=8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$

1) $0.5 \mathrm{~kg} / \mathrm{m}^{3}$
2) $0.2 \mathrm{~kg} / \mathrm{m}^{3}$
3) $0.1 \mathrm{~kg} / \mathrm{m}^{3}$
4) $0.02 \mathrm{~kg} / \mathrm{m}^{3}$

Ans. 2
Sol. $\rho=\frac{\mathrm{P} . \mathrm{M}}{\mathrm{RT}}=\frac{249 \times 10^{3} \times 2 \times 10^{-3}}{8.3 \times 300}$
$=0.2 \mathrm{~kg} / \mathrm{m}^{3}$
105. The ratio of contributions made by the electric field and magnetic field components to the intensity of an electromagnetic wave is: ( $\mathrm{C}=$ speed of electromagnetic waves)

1) c $: 1$
2) $1: 1$
3) $1: c$
4) $1: c^{2}$

Ans. 2

So
$\frac{\mathrm{I}_{\mathrm{E}}}{\mathrm{I}_{\mathrm{B}}}=\frac{\frac{\mathrm{I}}{2}}{\frac{\mathrm{I}}{2}}=\frac{1}{1}$
i.e., $1: 1$
106. For which one of the following, Bohr model is not valid?

1) Hydrogen atom
2) Singly ionised helium atom $\left(\mathrm{He}^{+}\right)$
3) Deuteron atom
4) Singly ionised neon atom $\left(\mathrm{Ne}^{+}\right)$

Ans. 4
So1. Singly ionised neon atom $\left(\mathrm{Ne}^{+}\right)$
Since it has more than one electron.
107. A long solenoid of 50 cm length have 100 turns carries a current of 2.5 A . The magnetic field at the centre of the solenoid is:
$\left(\mu=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}\right)$

1) $6.28 \times 10^{-4} \mathrm{~T}$
2) $3.14 \times 10^{-4} \mathrm{~T}$
3) $6.28 \times 10^{-5} \mathrm{~T}$
4) $3.14 \times 10^{-5} \mathrm{~T}$

Ans. 1
Sol. $\quad \mathrm{B}=\mu_{0} \mathrm{ni}$
$=\frac{\mu_{0} \mathrm{Ni}}{\mathrm{N}}$
$=\frac{4 \pi \times 10^{-7} \times 100 \times 2.5}{50 \times 10^{-2}}$
$=6.28 \times 10^{-4} \mathrm{~T}$
108. The Brewster's angle $i_{b}$ for an interface should be:

1) $0^{0}<i_{b}<30^{\circ}$
2) $30^{\circ}<\mathrm{i}_{\mathrm{b}}<45^{\circ}$
3) $45^{\circ}<i_{b}<90^{\circ}$
4) $i_{b}=90^{\circ}$

Ans. 3
Sol. $45^{\circ}<\mathrm{i}_{\mathrm{b}}<90^{\circ}$
109. A body weighs 72 N on the surface of the earth. What is the gravitational force on it, at a height equal to half the radius of the earth?

1) 48 N
2) 32 N
3) 30 N
4) 24 N

Ans. 2
Sol. Given $\mathrm{mg}=72 \mathrm{~N}$
$g_{h}=g\left(\frac{R}{R+h}\right)^{2}$
$=g\left(\frac{R}{R+\frac{R}{2}}\right)^{2}$
$=\frac{4}{9} g$
weight at $\frac{R}{2}$ is $W^{\prime}=\mathrm{mg}_{\mathrm{h}}$
$=m \frac{4 g}{9}$
$=\frac{4}{9} \mathrm{mg}$
$=\frac{4}{9} \times 72=32 \mathrm{~N}$
110. A screw gauge has least count of 0.01 mm and there are 50 divisions in its circular scale. The pitch of the screw gauge is:

1) 0.01 mm
2) 0.25 mm
3) 0.5 mm
4) 1.0 mm

Ans. 3
Sol. Pitch of the screw
$=$ L.C x number of divisions on circular scale
$=0.01 \mathrm{x} 50$
$=0.5 \mathrm{~mm}$
111. The mean free path for a gas, with molecular diameter $d$ and number density $n$ can be expressed as

1) $\frac{1}{\sqrt{2} n \pi d}$
2) $\frac{1}{\sqrt{2} n \pi d^{2}}$
3) $\frac{1}{\sqrt{2} n^{2} \pi d^{2}}$
4) $\frac{1}{\sqrt{2} n^{2} \pi^{2} d^{2}}$

Ans. 2
Sol. Mean free path $\lambda=\frac{1}{\sqrt{2} n \pi d^{2}}$
112. A ball is thrown vertically downward with a velocity of $20 \mathrm{~m} / \mathrm{s}$ from the top of a tower. It hits the ground after some time with a velocity of $80 \mathrm{~m} / \mathrm{s}$. The height of the tower is: $(g=10$ $\mathrm{m} / \mathrm{s}^{2}$ )

1) 360 m
2) 340 m
3) 320 m
4) 300 m

Ans. 4
Sol. $v^{2}-u^{2}=2 g H$
$(80)^{2}-(20)^{2}=2(10) \mathrm{H}$
$\therefore \mathrm{H}=300 \mathrm{~m}$
113. In a certain region of space with volume 0.2 $\mathrm{m}^{3}$, the electric potential is found to be 5 V throughout. The magnitude of electric field in this region is

1) Zero
2) $0.5 \mathrm{~N} / \mathrm{C}$
3) $1 \mathrm{~N} / \mathrm{C}$
4) $5 \mathrm{~N} / \mathrm{C}$

Ans. 1
Sol. $\because$ potential $\mathrm{v}=$ cons $\tan \mathrm{t}$

$$
\mathrm{E}=-\frac{\mathrm{dv}}{\mathrm{dr}}=0
$$

114. The average thermal energy for a mono-atomic gas is: $\left(k_{B}\right.$ is Boltzmann constant and $T$, absolute temperature)
1) $\frac{1}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
2) $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
3) $\frac{5}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
4) $\frac{7}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$

Ans. 2
Sol. $\frac{3}{2} \mathrm{k}_{\mathrm{B}} \mathrm{T}$
115. For the logic circuit shown, the truth table is


1) | -A | B | Y |
| ---: | ---: | ---: |
| 0 | 0 | 0 |
| 0 | 1 | 0 |
| 1 | 0 | 0 |
| 1 | 1 | 1 |
2) $\mathrm{A} B \quad \mathrm{Y}$
$0 \quad 0 \quad 0$
$0 \quad 1 \quad 1$
$1 \quad 0 \quad 1$
$\begin{array}{lll}1 & 1 & 1\end{array}$
3) $\mathrm{A} B \quad \mathrm{Y}$
$\begin{array}{lll}0 & 0 & 1\end{array}$
$1 \quad 0 \quad 1$
$\begin{array}{lll}1 & 1 & 0\end{array}$
4) A B Y
$\begin{array}{lll}0 & 0 & 1\end{array}$
$0 \quad 1 \quad 0$
100
$1 \quad 10$
Ans. 1
Sol. $\overline{\overline{\mathrm{A}}+\overline{\mathrm{B}}}=\overline{\overline{\mathrm{A}}} \cdot \overline{\overline{\mathrm{B}}}$
$=A \cdot B$
AND gate
116. The energy required to break one bond in DNA is $10^{-20} \mathrm{~J}$. This value in eV is nearly
1) 6
2) 0.6
3) 0.06
4) 0.006

Ans. 3
Sol. $1 \mathrm{~J}=\frac{1 \mathrm{eV}}{1.6 \times 10^{-19}}$
$\mathrm{E}=\frac{10^{-20}}{1.6 \times 10^{-19}}$
$=0.06$
117. Two particles of mass 5 kg and 10 kg respectively are attached to the two ends of a rigid rod of length 1 m with negligible mass. The centre of mass of the system from the 5 kg particle is nearly at a distance of:

1) 33 cm
2) 50 cm
3) 67 cm
4) 80 cm

Ans. 3
Sol. $\mathrm{X}_{\mathrm{cm}}=\frac{\mathrm{m}_{1} \mathrm{x}_{1}+\mathrm{m}_{2} \mathrm{X}_{2}}{\mathrm{~m}_{1}+\mathrm{m}_{2}}$
$=\frac{5(0)+10(1)}{5+10}$
$=0.666 \mathrm{~m}$
$=67 \mathrm{~cm}$ (nearly)
118. A spherical conductor of radius 10 cm has a charge of $3.2 \times 10^{-7} \mathrm{C}$ distributed uniformly. What is the magnitude of electric field at a point 15 cm from the centre of the sphere?
$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$

1) $1.28 \times 10^{4} \mathrm{~N} / \mathrm{C}$
2) $1.28 \times 10^{5} \mathrm{~N} / \mathrm{C}$
3) $1.28 \times 10^{6} \mathrm{~N} / \mathrm{C}$
4) $1.28 \times 10^{7} \mathrm{~N} / \mathrm{C}$

Ans. 2
Sol. $\mathrm{E}=\frac{1}{4 \pi \varepsilon_{0}} \cdot \frac{\mathrm{q}}{\mathrm{r}^{2}}$
$=9 \times 10^{9} \times \frac{3.2 \times 10^{-7}}{\left(15 \times 10^{-2}\right)^{2}}$
$=1.28 \times 10^{5} \mathrm{~N} / \mathrm{C}$
119. Taking into account of the significant figure, what is the value of $9.99 \mathrm{~m}-0.0099 \mathrm{~m}$ ?

1) 9.9801 m
2) 9.98 m
3) 9.980 m
4) 9.9 m

Ans. 2
Sol. 9.99
$\underline{0.010}$
9.980

Ans. 9.98
120. A $40 \mu \mathrm{~F}$ capacitor is connected to a $200 \mathrm{~V}, 50$ Hz ac supply. The rms value of the current in the circuit is, nearly

1) 1.7 A
2) 2.05 A
3) 2.5 A
4) 25.1 A

Ans. 3
Sol. $\mathrm{i}_{\mathrm{rms}}=\mathrm{VC} \omega$
$=200 \times 40 \times 10^{-6} \times 2 \pi \times 50=2.5 \mathrm{~A}$
121. Two cylinders A and B of equal capacity are connected to each other via a stop cock. A contains an ideal gas at standard temperature and pressure. B is completely evacuated. The entire system is thermally insulated. The stop cock is suddenly opened. The process is

1) Isothermal
2) Adiabatic
3) Isochoric
4) Isobaric

Ans. 2
Sol. Since the system is thermally insulated and the process is sudden process then it is adiabatic
122. Two bodies of mass 4 kg and 6 kg are tied to the ends of a massless strings. The string passes over a pulley which is frictionless (see figure). The acceleration of the system in terms of acceleration due to gravity $(\mathrm{g})$ is


1) $g$
2) $g / 2$
3) $g / 5$
4) $g / 10$

Ans. 3
So1. $\mathrm{a}=\frac{\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right) \mathrm{g}}{\mathrm{m}_{1}+\mathrm{m}_{2}}$
$=\frac{\mathrm{g}}{5} \mathrm{~ms}^{-2}$
123. An electron is accelerated from rest through a potential difference of V volt. If the de Broglie wavelength of the electron is $1.227 \times 10^{-2} \mathrm{~nm}$, the potential difference is

1) 10 V
2) $10^{2} \mathrm{~V}$
3) $10^{3} \mathrm{~V}$
4) $10^{4} \mathrm{~V}$

Ans. 4
So1. $\lambda=\frac{12.27}{\sqrt{v}} \stackrel{\circ}{\mathrm{~A}}$
$1.227 \times 10^{-11}=\frac{12.27}{\sqrt{\mathrm{v}}} \times 10^{-10} \mathrm{~m}$
$\mathrm{v}=10^{4} \mathrm{~V}$
124. When a uranium isotope ${ }_{92}^{235} \mathrm{U}$ is bombarded with a neutron, it generates ${ }_{36}^{89} \mathrm{Kr}$, three neutrons and

1) ${ }_{56}^{144} \mathrm{Ba}$
2) ${ }_{40}^{91} \mathrm{Zr}$
3) ${ }_{36}^{101} \mathrm{Kr}$
4) ${ }_{36}^{103} \mathrm{Kr}$

Ans. 1
Sol. ${ }_{92}^{235} \mathrm{U}+{ }_{0}^{1} \mathrm{n} \rightarrow{ }_{36}^{89} \mathrm{Kr}+{ }_{56}^{144} \mathrm{Ba}+3\left({ }_{0}^{1} \mathrm{n}\right)$
125. The capacitance of a parallel plate capacitor with air as medium is $6 \mu \mathrm{~F}$. With the introduction of a dielectric medium, the capacitance becomes $30 \mu \mathrm{~F}$. The permittivity of the medium is:
$\left(\varepsilon_{0}=8.85 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}\right)$

1) $0.44 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
2) $1.77 \times 10^{-12} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
3) $0.44 \times 10^{-10} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
4) $5.00 \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$

Ans. 3

Sol. $\mathrm{C}=\mathrm{KC}_{0}$
$30=\mathrm{k} \times 6$
$\mathrm{k}=5$
$\varepsilon=\mathrm{k} \varepsilon_{0}$
$=5 \times 8.85 \times 10^{-12}$
$=0.44 \times 10^{-10} \mathrm{C}^{2} \mathrm{~N}^{-1} \mathrm{~m}^{-2}$
126. The color code of a resistance is given below


The values of resistance and tolerance, respectively are"

1) $470 \mathrm{k} \Omega, 5 \%$
2) $47 \mathrm{k} \Omega, 10 \%$
3) $4.7 \mathrm{k} \Omega, 5 \%$
4) $470 \Omega, 5 \%$

Ans. 4
Sol. Yellow $\rightarrow 4$
Violet $\rightarrow 7$
Brown $\rightarrow 1$
Gold $\rightarrow 5 \%$
$47 \times 10^{1}+5 \%$
$470 \Omega, 5 \%$
127. A resistance wire connected in the left gap of a metre bridge balances a $10 \Omega$ resistance in the right gap at a point which divides the bridge wire in the ratio $3: 2$. If the length of the resistance wire is 1.5 m , then the length of $1 \Omega$ of the resistance wire is

1) $1.0 \times 10^{-2} \mathrm{~m}$
2) $1.0 \times 10^{-1} \mathrm{~m}$
3) $1.5 \times 10^{-1} \mathrm{~m}$
4) $1.5 \times 10^{-2} \mathrm{~m}$

Ans. 2
Sol. $\frac{P}{Q}=\frac{1}{100-1}$
$\frac{\mathrm{P}}{10}=\frac{3}{2}$
$P=15 \Omega$
Resistance per unit length $=\frac{\mathrm{P}}{\mathrm{L}}=\frac{15}{1.5}=10 \Omega \mathrm{~m}^{-1}$
$\therefore$ length of $1 \Omega$ resistance is $\frac{1}{10}=1 \times 10^{-1} \mathrm{~m}$
128. Light of frequency 1.5 times the threshold frequency is incident on a photosensitive material. What will be the photoelectric current if the frequency is halyed and intensity is doubled?

1) Doubled
2) Four times
3) One-fourth
4) Zero

Ans. 4
Sol. $\because v<v_{0}$, No photo electric effect takes place.
So photoelectric current is zero
129. The energy equivalent of 0.5 g of a substance is

1) $4.5 \times 10^{16} \mathrm{~J}$
2) $4.5 \times 10^{13} \mathrm{~J}$
3) $1.5 \times 10^{13} \mathrm{~J}$
4) $0.5 \times 10^{13} \mathrm{~J}$

Ans. 2
Sol. $\mathrm{E}=\mathrm{MC}^{2}$
$=0.5 \times 10^{-3} \times\left(3 \times 10^{8}\right)^{2}$
$=4.5 \times 10^{13} \mathrm{~J}$
130. A short electric dipole has a dipole moment of $16 \times 10^{-9} \mathrm{Cm}$. The electric potential due to the dipole at a point at a distance of 0.6 m from the centre of the dipole, situated on a line making an angle of $60^{\circ}$ with the dipole axis is:
$\left(\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}\right)$

1) 50 V
2) 200 V
3) 400 V
4) Zero

Ans. 2
Sol. Potential $v=\frac{1}{4 \pi \varepsilon_{0}} \frac{P \cos \theta}{\left(r^{2}\right)}$
$=9 \times 10^{9} \times 16 \times 10^{-9} \times \frac{1}{2} \times \frac{1}{0.36}=200 \mathrm{~V}$
131. A ray is incident at an angle of incidence $i$ on one surface of a small angle prism (with angle of prism A) and emerges normally form the opposite surface. If the refractive index of the material of the prism is $\mu$, then the angle of incidence is nearly equal to

1) $\frac{\mathrm{A}}{2 \mu}$
2) $\frac{2 \mathrm{~A}}{\mu}$
3) $\mu \mathrm{A}$
4) $\frac{\mu \mathrm{A}}{2}$

Ans. 3
Sol. $\mathrm{r}_{1}+\mathrm{r}_{2}=\mathrm{A}$
$\mathrm{r}_{1}+0=\mathrm{A}$
$\therefore \mathrm{r}_{1}=\mathrm{A}$
for small angled prism
$\mu=\frac{\sin i}{\sin r}=\frac{i}{A}$
$\mathrm{i}=\mu \mathrm{A}$
132. The quantities of heat required to raise the temperature of two solid copper spheres of radii $\mathrm{r}_{1}$ and $\mathrm{r}_{2}\left(\mathrm{r}_{1}=1.5 \mathrm{r}_{2}\right)$ through 1 K are in the ratio

1) $\frac{27}{8}$
2) $\frac{9}{4}$
3) $\frac{3}{2}$
4) $\frac{5}{3}$

Ans. 1
Sol. Heat $\mathrm{Q}=\mathrm{ms} \Delta \theta$
$\therefore \mathrm{Q} \propto \mathrm{m}$
$\mathrm{Q} \propto \mathrm{V} . \mathrm{d}$
$\mathrm{Q} \propto \frac{4}{3} \pi \mathrm{r}^{3}$
$\therefore \mathrm{Q} \propto \mathrm{r}^{3}$
$\Rightarrow \frac{\mathrm{Q}_{1}}{\mathrm{Q}_{2}}=\frac{\mathrm{r}_{1}^{3}}{\mathrm{r}_{2}^{3}}=\frac{27}{8}$
133. An iron rod of susceptibility 599 is subjected to magnetising field of $1200 \mathrm{~A} \mathrm{~m}^{-1}$. The permeability of the material of the rod is:
$\left(\mu_{0}=4 \pi \times 10^{-7} \mathrm{Tm} \mathrm{A}^{-1}\right)$

1) $2.4 \pi \times 10^{-4} \mathrm{~T}_{\mathrm{m} \mathrm{A}^{-1}}$
2) $8.0 \times 10^{-5} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
3) $2.4 \pi \times 10^{-5} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$
4) $2.4 \pi \times 10^{-7} \mathrm{~T} \mathrm{~m} \mathrm{~A}^{-1}$

Ans. 1
So1. $\mu=\mu_{0}[1+\chi]$
$-4 \pi \times 10^{-7}[1+599]$
$=2.4 \pi \times 10^{-4} \mathrm{TmA}^{-1}$
134. Assume that light of wavelength 600 nm is coming from a star. The limit of resolution of telescope whose objective has a diameter of 2 m is

1) $3.66 \times 10^{-7} \mathrm{rad}$
2) $1.83 \times 10^{-7} \mathrm{rad}$
3) $7.32 \times 10^{-7} \mathrm{rad}$
4) $6.00 \times 10^{-7} \mathrm{rad}$

Ans. 1
Sol. Limit of resolution $\theta=\frac{1.22 \lambda}{\mathrm{a}}$
$=3.66 \times 10^{-7} \mathrm{rad}$
135. The increase in the width of the depletion region in a $\mathrm{p}-\mathrm{n}$ junction diode is due to

1) Forward bias only
2) Reverse bias only
3) Both forward bias and reverse bias
4) Increase in forward current

Ans. 2
Sol. Reverse bias only
136. What is the change in oxidation number of carbon in the following reaction?
$\mathrm{CH}_{4}(\mathrm{~g})+4 \mathrm{Cl}_{2}(\mathrm{~g}) \rightarrow \mathrm{CCl}_{4}(1)+4 \mathrm{HCl}(\mathrm{g})$

1) +4 to +4
2) 0 to +4
3) -4 to +4
4) 0 to -4

Ans. 3
Sol. $\stackrel{-4}{\mathrm{C}} \mathrm{H}_{4}+4 \mathrm{Cl}_{2} \rightarrow \stackrel{+4}{\mathrm{C}} \mathrm{Cl}_{4}+4 \mathrm{HCl}$

$$
\begin{array}{cc}
\stackrel{\mathrm{X}}{\mathrm{C}} \mathrm{H}_{4} & \mathrm{X}+4(+1)=0 \\
& \mathrm{X}=-4 \\
\mathrm{x} & \mathrm{CCl} \\
\mathrm{C} & \mathrm{X}+4(-1)=0 \\
& \mathrm{X}=+4
\end{array}
$$

137. Which of the following amine will give the carbylamine test?
1) 


2)

3)

4)


Ans. 1
Sol. Only primary amines (aliphatic and aromatic) will give carbylamine test
138. The mixture which shows positive deviation from Raoult's law is

1) Ethanol + Acetone
2) Benzene + Toluene
3) Acetone + Chloroform
4) Chloroethane + Bromoethane

Ans. 1
Sol. Conceptual
139. An increase in the concentration of the reactants of a reaction leads to change in

1) Activation energy
2) Heat of reaction
3) Threshold energy
4) Collision frequency

Ans. 4
Sol. As concentration of reactants increases, the number of reactant molecules per unit volume increases.
$\therefore$ Collision frequency (number collisions) increases.
140. Sucrose on hydrolysis gives

1) $\beta$-D-Glucose $+\alpha$-D-Fructose
2) $\alpha$-D-Glucose $+\beta$-D-Glucose
3) $\alpha$-D-Glucose $+\beta$-D-Fructose
4) $\alpha$-D-Fructose $+\beta$-D-Fructose

Ans. 3
Sol. Conceptual
141. A tertiary butyl carbocation is more stable than a secondary butyl carbocation because of which of the following?

1) -I effect of $-\mathrm{CH}_{3}$ groups
2) +R effects of $-\mathrm{CH}_{3}$ groups
3) -R effect of $-\mathrm{CH}_{3}$ groups
4) Hyper conjugation

Ans. 4
Sol. Hyper conjugation
142. Identify the correct statement form the following

1) Wrought iron is impure iron with $4 \%$ carbon
2) Blister copper has blistered appearance due to evolution of $\mathrm{CO}_{2}$
3) Vapour phase refining is carried out of

Nickel by Van Arkel method
4) Pig iron can be moulded into a variety of shapes
Ans.
Sol. Conceptual
143. Identify the incorrect match.

| Name | IUPAC official Name |
| :--- | :--- |
| a) Unnilunium | i) Mendelevium |
| b) Unniltrium | ii) Lawrencium |
| c) Unnilhexium | iii) Seaborgium |
| d) Unnunnium | iv) Darmstadtium |

1) $a-i$
2) b-ii
3) c-iii
4) d-iv

Ans. 4
Sol. Unununium - Roentgenium
144. The number of Faradays (F) required to produce 20 g of calcium from molten $\mathrm{CaCl}_{2}$ (Atomic mass of $\mathrm{Ca}=40 \mathrm{~g} \mathrm{~mol}^{-1}$ ) is:

1) 1
2) 2
3) 3
4) 4

Ans. 1
Sol. 20 g of $\mathrm{Ca}=1 \mathrm{GEN}=1 \mathrm{~F}$
145. An element has a body centered cubic (bcc) structure with a cell edge of 288 pm . The atomic radius is

1) $\frac{\sqrt{3}}{4} \times 288 \mathrm{pm}$
2) $\frac{\sqrt{4}}{4} \times 288 \mathrm{pm}$
3) $\frac{4}{\sqrt{3}} \times 288 \mathrm{pm}$
4) $\frac{4}{\sqrt{2}} \times 288 \mathrm{pm}$

Ans. 1
Sol. $r=\frac{\sqrt{3} a}{4}=\frac{\sqrt{3} \times 288}{4} \mathrm{pm}$
146. Reaction between benzaldehyde and acetophenone in presence of dilute NaOH is known as

1) Aldol condensation
2) Cannizzaro's reaction
3) Cross Cannizzaro's reaction
4) Cross Aldol condensation

Ans. 4
Sol. $\underset{\text { without } \alpha \text {-carbon }}{\mathrm{C}_{6} \mathrm{H}_{5}}-\underset{\text { with } \alpha-\text { carbon }}{\mathrm{CHO}}+\underset{\mathrm{CH}_{3} \mathrm{COC}_{6} \mathrm{H}_{5} \xrightarrow{\text { dil. } \mathrm{NaOH}}}{ }$


Which is a cross aldol condensation
147. Find out the solubility of $\mathrm{Ni}(\mathrm{OH})_{2}$ in 0.1 M NaOH . Given that the ionic product of $\mathrm{Ni}(\mathrm{OH})_{2}$ is $2 \times 10^{-15}$

1) $2 \times 10^{-13} \mathrm{M}$
2) $2 \times 10^{-8} \mathrm{M}$
3) $1 \times 10^{-13} \mathrm{M}$
4) $1 \times 10^{8} \mathrm{M}$

Ans. 1
Sol. $\mathrm{Ni}\left(\underset{\mathrm{s}^{1}}{\mathrm{OH}}\right)_{2} \rightarrow \underset{\mathrm{~s}^{1}}{\mathrm{Ni}^{+2}}+\underset{2 \mathrm{~S}^{1}}{2 \mathrm{H}^{-}}$
$\mathrm{NaOH} \rightarrow \underset{0.1 \mathrm{M}}{\mathrm{Na}^{+}}+\underset{0.1 \mathrm{M}}{\mathrm{OH}^{-}}$
$\mathrm{k}_{\mathrm{Sp}}=\left[\mathrm{Ni}^{+2}\right]\left[\mathrm{OH}^{-}\right]^{2}$
$=\mathrm{S}^{1}\left(2 \mathrm{~S}^{1}+0.1\right)^{2}$
$2 \times 10^{-15}=S^{1} \times 0.01$
$\mathrm{S}^{1}=2 \times 10^{-13} \mathrm{M}$
148. For the reaction, $2 \mathrm{Cl}(\mathrm{g}) \rightarrow \mathrm{Cl}_{2}(\mathrm{~g})$, the correct option is

1) $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$
2) $\Delta_{\mathrm{r}} \mathrm{H}>0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$
3) $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}>0$
4) $\Delta_{\mathrm{r}} \mathrm{H}<0$ and $\Delta_{\mathrm{r}} \mathrm{S}<0$

Ans. 4
Sol. $2 \mathrm{Cl}_{(\mathrm{g})} \rightarrow \mathrm{Cl}_{2(\mathrm{~g})}$
Bond formation is exothermic $(\Delta \mathrm{H}<0)$
As gaseous moles decreases $(\Delta \mathrm{S}<0)$
149. Which of the following is a basic amino acid?

1) Seine
2) Alanine
3) Tyrosine 4) Lysine

Ans. 4
Sol. Conceptual (Lysine)
150. Hydrolysis of source is given by the following reaction
Sucrose $+\mathrm{H}_{2} \mathrm{O} \rightleftharpoons$ Glu cose + Fructose
If the equilibrium constant $\left(\mathrm{K}_{\mathrm{C}}\right)$ is $2 \times 10^{13}$ at 300 K , the value of $\Delta_{\mathrm{r}} \mathrm{G}^{-}$at the same temperature will be

1) $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
2) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(2 \times 10^{13}\right)$
3) $8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(3 \times 10^{13}\right)$
4) $-8.314 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1} \times 300 \mathrm{~K} \times \ln \left(4 \times 10^{13}\right)$

Ans.
Sol.
$\Delta G=-R T \ln K_{c}$
$=-8.314 \times 300 \times \ln \left(2 \times 10^{13}\right)$
151. An alkene on ozonolysis gives methanol as one
of the product. Its structure is
1)

2)

3)

4)


Ans. 3

Sol.

$$
(\mathrm{O})
$$


$+\mathrm{HCHO}$
152. A mixture of $\mathrm{N}_{2}$ and Ar gases in a cylinder contains 7 g of $\mathrm{N}_{32}$ and 8 g of Ar. If the total pressure of the mixture of the gases in the cylinder is 27 bar, the partial pressure of $\mathrm{N}_{2}$ is: [Use atomic masses (in g mol${ }^{-1}$ ): $\mathrm{N}=14, \mathrm{Ar}=40$ ]

1) 9 bar
2) 12 bar
3) 15 bar 4) 18 bar

Ans. 3
Sol. $\mathrm{P}_{\mathrm{N}_{2}}=\mathrm{X}_{\mathrm{N}_{2}} \cdot \mathrm{P}_{\text {total }}$

$$
\begin{aligned}
& =\frac{\mathrm{n}_{\mathrm{N}_{2}}}{\mathrm{n}_{\mathrm{N}_{2}}+\mathrm{n}_{\mathrm{Ar}}} \times \mathrm{P}_{\text {total }} \\
& =\frac{\frac{7}{28}}{\frac{7}{28}+\frac{8}{40}} \times 27=15 \mathrm{bar}
\end{aligned}
$$

153. Match the following and identify the correct option

| a) $\mathrm{CO}(\mathrm{g})+\mathrm{H}_{2}(\mathrm{~g})$ | i) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}+\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$ |
| :--- | :--- |
| b) Temporary <br> hardness of water | ii) An electron deficient <br> hydride |
| c) $\mathrm{B}_{2} \mathrm{H}_{6}$ | iii) Synthesis gas |
| d) $\mathrm{H}_{2} \mathrm{O}_{2}$ | iv) Non-planar structure |

1) a-iii, b-i, c-ii, d-iv
2) a-iii, b-ii, c-i, d-iv
3) a-iii, b-iv, c-ii, d-i
4) a-i, b-iii, c-ii, d-iv

Ans. 1
Sol. Conceptual
154. The following metal ion activates many enzymes, participates in the oxidation of glucose to produce ATP and with Na , is responsible for the transmission of nerve signals

1) Iron
2) Copper
3) Calcium
4) Potassium

Ans. 4
Sol. Conceptual
155. Match the following:

| Oxide | Nature |
| :--- | :--- |
| a) CO | i) Basic |
| b) BaO | ii) Neutral |
| c) $\mathrm{Al}_{2} \mathrm{O}_{3}$ | iii) Acidic |
| d) $\mathrm{Cl}_{2} \mathrm{O}_{7}$ | iv) Amphoteric |

Which of the following is correct option?

1) a-i, b-ii, c-iii, d-iv
2) a-ii, b-i, c-iv, d-iii
3) a-iii, b-iv, c-i, d-ii
4) a-iv, b-iii, c-ii, d-i

Ans. 2
Sol. Conceptual
156. Elimination reaction of 2 -Bromon-pentane to form penta-2-ene is
a) $\beta$-Elimination reaction
b) Follows Zaitsev rule
c) Dehydrohalogenation reaction
d) Dehydration reaction

1) a, b, c
2) a, c, d
3) b, c, d
4) a, b, d

Ans. 1
Sol. Conceptual
157. Paper chromatography is an example of

1) Adsorption chromatography
2) Partition chromatography
3) Thin layer chromatography
4) Column chromatography

Ans. 2
Sol. Conceptual
158. The correct option for free expansion of an ideal gas under adiabatic condition is

1) $q=0, \Delta T=0$ and $w=0$ 2) $q=0, \Delta T<0$ and $w>0$
2) $q<0, \Delta T=0$ and $w=0 \quad$ 4) $q>0, \Delta T>0$ and $w>0$

Ans. 1
Sol. Free expansion, $\mathrm{w}=0$
Adiabatic process $\mathrm{q}=0$
$\therefore \Delta U=0 \quad(\Delta U=q+w)$
$\therefore \Delta \mathrm{T}=0$
159. Which of the following set of molecules will have zero dipole moment?

1) Ammonia, beryllium difluoride, water, 1,4dichlorobenzene
2) Boron trifluoride, hydrogen fluoride, carbon dioxide, 1,3-dichlorobenzene
3) Nitrogen trifluoride, beryllium difluoride, water, 1,3-dichlorobenzene
4) Boron trigluoride, beryllium difluoride, carbon dioxide, 1,4-dichlorobenzene
Ans. 4
Sol. Dipole moment of symmetrical molecules is zero
160. The number of protons, neutrons and electrons in ${ }_{71}^{175} \mathrm{Lu}$, respectively, are
1) 71,104 and 71
2) 104,71 and 71
3) 71,71 and 104
4) 175,104 and 71

Ans. 1
Sol. $P=Z=71$
$\mathrm{e}^{-}=\mathrm{Z}=71$
$\mathrm{n}=(\mathrm{A}-\mathrm{Z})=175-71=104$
161. On electrolysis of disulphuric acid using Platinum (Pt) electode, the product obtained at anode will be

1) Hydrogen gas
2) Oxygen gas
3) $\mathrm{H}_{2} \mathrm{~S}$ gas
4) $\mathrm{SO}_{2}$ gas

Ans. 2
Sol. Anode

$$
2 \mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{O}_{2}+4 \mathrm{H}^{+}+4 \mathrm{e}^{-}
$$

162. Identify the correct statements from the following:
a) $\mathrm{CO}_{2}(\mathrm{~g})$ is used as refrigerant for ice-cream and frozen food
b) The structure of $\mathrm{C}_{60}$ contains twelve six carbon rings and twenty five carbon rings
c) ZSM-5, a type of zeolite, is used to convert alcohols into gasoline
d) CO is colourless and odourless gas
1) a, b and c only
2) a and c only
3) b and c only
4) c and d only

Ans. 4
Sol. Conceptual
163. Urea reacts with water to form A which will decompose to form B. B when passed through $\mathrm{Cu}^{+2}$ (aq), deep blue colour solution C is formed. What is the formula of C from the following

1) $\mathrm{CuSO}_{4}$
2) $\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}$
3) $\mathrm{Cu}(\mathrm{OH})_{2}$
4) $\mathrm{CuCO}_{3} \cdot \mathrm{Cu}(\mathrm{OH})_{2}$

Ans. 2
Sol. $\mathrm{NH}_{2} \mathrm{CONH}_{2} \xrightarrow[\Delta]{\mathrm{H}_{2} \mathrm{O}} \underset{(\mathrm{B})}{\mathrm{NH}_{3}}$

$$
\mathrm{Cu}^{+2}+4 \mathrm{NH}_{3} \rightarrow \underset{(\mathrm{C})}{\left[\mathrm{Cu}\left(\mathrm{NH}_{3}\right)_{4}\right]^{2+}}
$$

Blue coloured complex
164. Identify compound X in the following sequence of reaction

1)



3)
4)


Ans. 3
Sol.


165. Anisole on cleavage with HI gives
1)

2)

3)

I


Ans. 1

Sol.

166. The freezing point depression constant $\left(\mathrm{K}_{\mathrm{f}}\right)$ of benzene is $5.12 \mathrm{~K} \mathrm{~kg} \mathrm{~mol}^{-1}$. The freezing point depression for the solution of molality 0.078 , containing a non-electrolyte solute in benzene is (rounded off upto two decimal places)

1) 0.20 K
2) 0.80 K
3) 0.40 K
4) 0.60 K

Ans. 3
Sol. $\Delta \mathrm{T}_{\mathrm{f}}=\mathrm{k}_{\mathrm{f}} \times \mathrm{m}=5.12 \times 0.078=0.4 \mathrm{k}$
167. Reaction between acetone and methylmagnesium chloride followed by hydrolysis will give

1) Isopropyl alcohol
2) Sec. butyl alcohol
3) Tert. Butyl alcohol
4) Isobutyl alcohol

Ans. 3

Sol.



30-butyl alcohol
168. The rate constant for a first order reaction $4.606 \times 10^{-3} \mathbf{S}^{-1}$. The time required to reduce 2.0 g of the reactant to 0.2 g is

1) 100 s
2) 200 s
3) 500 s
4) 1000 s

Ans. 3
Sol. $\mathrm{t}=\frac{2.303}{\mathrm{k}} \log \frac{[\mathrm{R}]_{0}}{[\mathrm{R}]}$

$$
=\frac{2.303}{4.606 \times 10^{-3}} \log \left(\frac{2}{0.2}\right)=500 \mathrm{~s}
$$

169. HCl was passed through a solution of $\mathrm{CaCl}_{2}$, $\mathrm{MgCl}_{2}$ and NaCl . Which of the following compounds crystallises?
1) Both $\mathrm{MgCl}_{2}$ and $\mathrm{CaCl}_{2}$
2) Only NaCl
3) Only $\mathrm{MgCl}_{2}$
4) $\mathrm{NaCl}, \mathrm{MgCl}_{2}$ and $\mathrm{CaCl}_{2}$

Ans. 2
Sol. Lower soluble salt can be precipitated first ( NaCl has lower S value)
170. Which of the following oxoacid of sulphur has -O-O- linkage?

1) $\mathrm{H}_{2} \mathrm{SO}_{3}$, sulphurous acid
2) $\mathrm{H}_{2} \mathrm{SO}_{4}$, sulphuric acid
3) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$, peroxodisulphuric acid
4) $\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{7}$, pyrosulphuric acid

Ans. 3
$\mathrm{H}_{2} \mathrm{~S}_{2} \mathrm{O}_{8}$

Sol.

171. Which of the following is a natural polymer?

1) cis-1, 4-polyisoprene
2) poly (Butadiene-styrene)
3) Polybutadiene
4) poly(Butadiene-acrylonitrile)

Ans. 1
Sol. cis-1, 4-polyisoprene (natural rubber)
172. Identify a molecule with does not exist.

1) $\mathrm{He}_{2}$
2) $\mathrm{Li}_{2}$
3) $\mathrm{C}_{2}$
4) $\mathrm{O}_{2}$

Ans. 1
Sol. $\mathrm{He}_{2} \quad$ Bond order $=\frac{1}{2}\left[\mathrm{~N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}\right]$

$$
=\frac{1}{2}[2-2]=0
$$

$\therefore$ Does not exist
173. Measuring Zeta potential is useful in determining which property of colloidal solution?

1) Viscosity
2) Solubility
3) Stability of the colloidal particles
4) Size of the colloidal particles

Ans. 3
Sol. Conceptual
174. The calculated spin only magnetic moment of $\mathrm{Cr}^{2+}$ ion is

1) 3.87 BM
2) 4.90 BM
3) 5.92 BM
4) 2.84 BM

Ans. 2
Sol. $\mathrm{Cr}^{2+}[\mathrm{Ar}] 3 \mathrm{~d}^{4} 4 \mathrm{~s}^{0}$
$\mathrm{n}=4$
$\mu=\sqrt{\mathrm{n}(\mathrm{n}+2)}$
$=\sqrt{4(4+2)}=\sqrt{24}=4.90 \mathrm{BM}$
175. Which of the following alkane cannot be made in good yield by Wurtz reaction

1) n-Hexane
2) 2,3-Dimethylbutane
3) n-Heptane
4) n-Butane

Ans. 3
Sol. Wurtz reaction is useful to prepare alkanes with even number of carbon atoms (symmetrical alkanes) only
176. Which of the followings has maximum number of atoms?

1) 1 g of $\mathrm{Ag}(\mathrm{s})$ [Atomic mass of $\mathrm{Ag}=180$ ]
2) 1 g of $\mathrm{Mg}(\mathrm{s})$ [Atomic mass of $\mathrm{Mg}=24$ ]
3) 1 g of $\mathrm{O}_{2}(\mathrm{~g})$ [Atomic mass of $\mathrm{O}=16$ ]
4) 1 g of $\mathrm{Li}(\mathrm{s})$ [Atomic mass of $\mathrm{Li}=7$ ]

Ans. 4
Sol. Number of atoms $=\frac{\text { given weight }}{\text { GAW }} \times \mathrm{N}_{\mathrm{A}}$
$\therefore$ 'Li' with least GAW, has highest number of atoms
177. Identify the incorrect statement?

1) $\mathrm{Cr}^{2+}\left(\mathrm{d}^{4}\right)$ is a stronger reducing agent than $\mathrm{Fe}^{2+}\left(\mathrm{d}^{6}\right)$ in water
2) The transition metals and their compounds are known for their catalytic activity due to their ability to adopt multiple oxidation states and to form complexes
3) Interstitial compounds are those that are formed when small atoms like $\mathrm{H}, \mathrm{C}$ or N are trapped inside the crystal lattices of metals
4) The oxidation states of chromium in $\mathrm{CrO}_{4}^{2-}$ and $\mathrm{Cr}_{2} \mathrm{O}_{4}^{2-}$ are not the same
Ans. 4
Sol. $\mathrm{CrO}_{4}^{-2} \quad \mathrm{Cr} \rightarrow+6$
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{-2} \quad \mathrm{Cr} \rightarrow+6$
178. Which of the following is the correct order of increasing field strength of ligands to form coordination compounds?
1) $\mathrm{SCN}^{-}<\mathrm{F}^{-} \mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{CN}^{-}$
2) $\mathrm{SCN}^{-}<\mathrm{F}^{-}<\mathrm{CN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}$
3) $\mathrm{F}^{-}<\mathrm{SCN}^{-}<\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{CN}^{-}$
4) $\mathrm{C}_{2} \mathrm{O}_{4}^{2-}<\mathrm{CN}^{-}<\mathrm{SCN}^{-}<\mathrm{F}^{-}$

## Ans. 1

Sol. Conceptual
179. Which of the following is a cationic detergent?

1) Sodium lauryl sulphate
2) Sodium stearate
3) Cetyltrimethyl ammonium bromide
4) Sodium dodecylbenzene sulphonate

Ans.
3
Sol. Conceptual
180. Which of the following is not correct about carbon monoxide?

1) It forms carboxyhaemoglobin
2) It reduces oxygen carrying ability blood
3) The carboxyhamoglobin (haemoglobin bound to CO ) is less stable than oxyhaemoglobin
4) It is produced due to incomplete combustion.
Ans. 3
Sol. Carboxyhaemoglobin is ' 300 ' times more stable than oxyhaemoglobin
